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Abstract

Aim: More powerful tests of biodiversity theories need to move beyond species richness
and explicitly focus on mechanisms generating diversity via trait composition. The rise
of trait-based ecology has led to an increased focus on the distribution and dynamics of
traits across broad geographic and climatic gradients and how these distributions influ-
ence ecosystem function. However, a general theory of trait-based ecology, that can
apply across different scales (e.g. species that differ in size) and gradients (e.g. temper-
ature), has yet to be formulated. While research focused on metabolic and allometric
scaling theory provides the basis for such a theory, it does not explicitly account for
differences in traits within and across taxa, such as variation in the optimal temperature
for growth. Here we synthesize trait-based and metabolic scaling approaches into a
framework that we term ‘Trait Driver Theory’ or TDT. It shows that the shape and dynam-
ics of trait and size distributions can be linked to fundamental drivers of community
assembly and how the community will respond to future drivers. To assess predictions
and assumptions of TDT, we review several theoretical studies and recent empirical
studies spanning local and biogeographic gradients. Further, we analyze how the shift
in trait distributions influences ecosystem processes across an elevational gradient and a
140-year-long ecological experiment. We show that TDT provides a baseline for (i)
recasting the predictions of ecological theories based on species richness in terms of
the shape of trait distributions and (ii) integrating how specific traits, including body
size, and functional diversity then ‘scale up’ to influence ecosystem functioning and
the dynamics of species assemblages across climate gradients. Further, TDT offers a
novel framework to integrate trait, metabolic/allometric, and species-richness-based
approaches to better predict functional biogeography and how assemblages of species
have and may respond to climate change.
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1. INTRODUCTION

Understanding and explaining species richness patterns have had far-

reaching influence on the development of ecology. Biodiversity science

strives to understand the drivers and consequences of variation in the num-

ber of species and how species abundances change across spatial and temporal

scales (MacArthur, 1972; Rosenzweig, 1995). These changes in species rich-

ness have also been linked with changes in ecosystem functioning. The Bio-

diversity–Ecosystem Functioning (BEF) hypothesis states that ecosystems

with greater biodiversity are more productive and stable (Naeem et al.,

1994; Tilman, 2001; Tilman et al., 1997). Attempts to answer these ques-

tions have led to debates that polarized the field (Wardle, 2002), and a grow-

ing consensus that species numbers alone do not inform us about all

important aspects of ecosystem functioning and community responses to

environmental change (Chapin et al., 2000; Dı́az and Cabido, 2001; Diaz

et al., 2007; Stevens et al., 2003).

More recently, trait-based approaches have focused on recasting classical

questions from the species richness literature (Hillebrand and Matthiessen,

2009; Lamanna et al., 2014; Lavorel and Garnier, 2002; McGill et al.,

2006; Violle et al., 2007). Instead of species richness, there is an attempt

to focus on functional traits and diversity in trait values (Dı́az and

Cabido, 2001; Lavorel and Garnier, 2002; Mason et al., 2005; Petchey

and Gaston, 2002; Roscher et al., 2012). In addition, metabolic scaling the-

ory or MST has focused on the central role of body size as a critical driver of

ecological, ecosystem, and evolutionary patterns and processes (Enquist

et al., 1998, 2003; Gillooly et al., 2005; Savage et al., 2004). One could also

ask about diversity in the number and/or range of trait or body size values,

and to some degree, this depends on how traits are defined. As discussed by

Dell et al. (2015) and Pawar (2015) in this issue, the premise is that measures

of traits, including body size, can better reveal the mechanisms and forces

that ultimately structure biological diversity (Grime, 2006; McGill et al.,

2006; Stegen et al., 2009) and increase the generality and predictability of

ecological models (Dı́az et al., 2004; Kattge et al., 2011; Webb et al.,

2010). Trait-based approaches have especially received attention for plant

life histories and strategies due to a renewed interest in measuring traits across

different environments and scales (Craine, 2009). While this has long been

part of comparative physiology and ecology (see Arnold, 1983; Grime,

1977), it is now being heralded as its central paradigm (Craine, 2009;
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Westoby and Wright, 2006). Similarly, trait-based approaches are being

used to disentangle the forces that structure larger scale biodiversity gradients

(Belmaker and Jetz, 2013; Han et al., 2005; Reich, 2005; Reich and

Oleksyn, 2004; Safi et al., 2011; Swenson and Enquist, 2007) and to predict

large-scale ecosystem shifts due to climate change (Elser et al., 2010; Frenne

et al., 2013).

1.1 Central Limitations of Trait-Based Ecology
An important limitation to developing a more predictive trait-based ecology

is that its focus and implementation have relied almost entirely on empirical

correlations and null models (for example, see discussion in Swenson, 2013).

There is a need for theory and quantitative arguments to move beyond pat-

tern searching. Further, trait-based ecology has largely developed indepen-

dently from MST, where the role of body size—arguably a key trait—is

central to scaling up organismal processes. Nonetheless, a key focus of

trait-based ecology is to identify the general processes underlying trait-based

ecology (Enquist, 2010; Shipley, 2010; Suding et al., 2008b; Webb et al.,

2010;Weiher et al., 2011). Such an advance would help guide the explosion

of trait-based data collection (Dell et al., 2013; Kattge et al., 2011), develop a

more predictive ecology, and organize rapidly developing directions in trait-

based ecology (Boulangeat et al., 2012; Funk et al., 2008; Lavorel et al.,

2011; McGill et al., 2006; Shipley, 2010; Suding et al., 2008b).

Another limitation is the debate about whether biodiversity, trait diver-

sity, or both are important for ecosystem functioning (Hooper et al., 2004;

Loreau et al., 2001). We agree with Cardinale et al. (2007) that this debate is

largely a false dichotomy. Increasingly, the evidence shows that both the

number of species and types of species in an ecosystem impact biomass pro-

duction. For example, focusing solely on species number has resulted in

sometimes positive, negative, or null relationships between species richness

and ecosystem functioning (Grace et al., 2007; Roscher et al., 2012).

Lastly, because trait-based ecology measures properties of individuals

that are linked to the environment and because it attempts to make predic-

tions for ecosystem functioning, it must be able to scale from individuals to

ecosystems. However, achieving this requires an exciting but extremely

challenging synthesis of physiology, population biology, evolutionary biol-

ogy, community ecology, ecosystem ecology, and global ecology (Reich,

2014; Webb et al., 2010). In this chapter, we suggest combining trait-based

approaches with MST to make some progress on this problem.
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Here, we present a novel theoretical framework to scale from traits to

communities to ecosystems and to link measures of diversity. We argue that

trait-based ecology can be made more predictive by synthesizing several key

areas of research and to focus on the shape and dynamics of trait distributions.

Our approach is to develop more of a predictive theory for how environ-

mental changes, including land use and shifts in abiotic factors across geo-

graphic and temporal gradients, influence BEF (Naeem et al., 2009). We

show how starting with a few simple but general assumptions allows us to

build a foundation by which more detailed and complex aspects of ecology

and evolution can be added. We show how our approach can reformulate

and generalize the arguments of Chapin et al. (2000), McGill et al. (2006)

and Violle et al. (2014) by integrating several insights from trait-based ecol-

ogy (Garnier andNavas, 2012) andMST (Enquist et al., 1998; Gillooly et al.,

2001; West et al., 1997). In doing so, we can derive a more synthetic theory

that can begin to: (i) assess differing assumptions underlying the assembly of

species; (ii) assess the relative importance of hypothesized drivers of trait

composition and diversity; and (iii) build a more predictive and dynamical

framework for scaling from traits to communities and ecosystems. We call

this theory, Trait Driver Theory or TDT, because it links how the dynamics

of biotic and abiotic environment then drive the performance of individuals

and ecosystems via their traits. CombiningMSTwith trait driver approaches

allows TDT to work across scales and also addresses one of MST’s key crit-

icisms: it does not incorporate ecological variation—such as trait variation—

and cannot be applied to understanding the forces that shape the diversity

and dynamics of local communities (Coomes, 2006; Tilman et al., 2004).

2. TRAIT DRIVER THEORY

TDT is based on a synthesis of three influential bodies of work. The

first are trait-based approaches that are largely encapsulated in Grime’s Mass

Ratio Hypothesis or MRH (Grime, 1998). The MRH states that ecosystem

functioning is determined by the characteristics or traits of the dominant

(largest biomass) species. Implicit in the MRH is the idea that traits of the

dominant species are a more relevant measure than species richness. The sec-

ond component is the generalized and quantitative approach to trait-based

ecology through Norberg et al. (2001) who used a mathematical framework

to link the distribution dynamics of phenotypic traits with environmental

change and ecosystem functioning (Norberg, 2004; Norberg et al., 2001;

Savage et al., 2007; Shipley, 2010). The third component is Metabolic
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Scaling Theory or MST. MST can be used to predict how variation in

organismic size and the traits associated with metabolism will then influence

individual performance (growth and resource use), and how these perfor-

mance measures will then scale up to influence populations, communities,

and ecosystems (Enquist et al., 1998, 2003, 2009; Savage et al., 2004; Yvon-

Durocher et al., 2012). MST achieves this by showing how variation in

individual rates of mass growth, dM/dt, and metabolism, B, can be linked

to variation in a few key traits (e.g. body size,M, and traits related to cellular

metabolism and allocation; see Enquist et al., 2007b, 2009; von Allmen et al.,

2012; West et al., 2002).

2.1 The Central Assumptions of Trait-Based Ecology
and the ‘Holy Grail’ of Trait-Based Ecology

Trait-based ecology assumes that there are traits that are functional, meaning

they link the environment to variation in whole-organism performance and

ultimately fitness (Schmitz et al., 2015; Violle et al., 2007; see Fig. 1). That is,

as shown in Fig. 1 and as described in Schmitz et al. (2015 in this special

issue), variation in traits influences organismal performance (e.g. metabo-

lism, growth rate, demographic rates) and ultimately fitness (Ackerly and

Monson, 2003; Garnier et al., 2004; Lavorel et al., 2007; Violle et al.,
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Figure 1 Path diagram representing the linkages between phenotypic traits, z, perfor-
mance measures, f, and fitness, w. The arrows represent possible mechanistic linkages
between traits. The coefficients β represent the correlation coefficients between traits, z,
functions, f, and ultimately fitness, w. Note: performance measures include growth rate
as well as survivorship and reproductive rates. Metabolic scaling theory explicitly links
traits to these performance functions. Trait Driver Theory aims to link the performance
function with community assembly and ecosystem functioning. Figure modified from
Kingsolver and Huey (2003) and Arnold (1983).
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2007). This approach has been recently validated with a comparative study

linking variation in individual-level traits with variation in life history and

demography parameters (Adler et al., 2014). Another key assumption of

trait-based ecology is that traits of individuals can be used to predict individ-

ual performance that can be effectively summed or scaled up to the function-

ing of ecosystems (Lavorel and Garnier, 2002; Suding et al., 2008b). The

raison d’être and the ‘Holy Grail’ of trait-based ecology is to use functional

traits, rather than species identities, to better predict community and ecosys-

tem dynamics (Lavorel and Garnier, 2002; Lavorel et al., 2007; Suding and

Goldstein, 2008).

2.2 Linking Traits, Individual Performance, Communities,
and Ecosystem Functioning

We start by extending Grime’s MRH. Grime argued that dominant traits

rather than species number drive ecosystem functioning. As a result, it is cru-

cial to measure the trait frequency distribution defined by biomass for the

assemblage. An important question is in order to assess the MRH should

one use abundance- or biomass-weighted mean trait values to best estimate

the frequency distributions. In Section 5 below we further address this ques-

tion, however, to start TDT also focuses on the trait frequency distribution

C(z)—the histogram of biomass across individuals characterized by a given

trait value, z, summed across all individuals within and across species. Thus,

C(z) captures both intra- and interspecific trait differences. However, unlike

the MRH and current emphasis on using community-weighted mean traits,

we are interested in the overall shape of the distribution of phenotypes of

individuals as measeured by the central moments—variance, skewness,

kurtosis—beyond the mean. We can link individual growth rate and the

population per capita growth rates via how traits influence organismal perfor-

mance via the growth function,

f zð Þ¼ 1

C zð Þ
� �

dC zð Þ
dt

� �
(1)

whereC(z)/dt is the biomass growth rate for all individuals with a given trait

value z (see Appendix). By integrating the growth equation across all values

of the trait across individuals, we can derive dynamic equations for how total

community biomass, CTot, depends on the shape of the biomass-trait distri-

bution, C(z), and how that shape itself changes in time. Consequently, the

net production of biomass in the community or Net Primary Productivity

(NPP) is
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dCTot

dt
¼
ð
f zð ÞC zð Þdz (2)

(see also Lavorel and Garnier, 2002; Norberg et al., 2001; Vile et al., 2006).

Equation (2) requires understanding what sets the form of f(z).

2.3 Linking Dynamics of Trait Distributions to Environmental
Change and Immigration

Starting with Norberg et al. (2001) and Savage et al. (2007), we focus on

how traits that strongly influence organismal growth rate are influenced

by the environment, E. In Fig. 2, we show an example of how variation

f (zi, E)

E

Community A Community B

Figure 2 Graphical representation of essential components of Trait Driver Theory. Each
curve represents positive performance (here shown as the growth function f ) or growth
rates of individuals characterized by a unique trait value, z. Each colour then indicates
how a given trait value then translates to variation in organismal growth rate across an
environmental gradient, E. Because of a trade-off between traits and the environment
(see Section 2.3), each trait has an optimal environment where growth is maximized,
and each trait exhibits a unimodal response to an environmental gradient, E. At different
points along an environmental gradient, different traits are characterized by the highest
growth rate, f. Also, species can differ in the width of their performance curves, σz

2.
Here in two communities, A and B, although several trait values can achieve positive
growth, in community A the black phenotype has the highest growth rate in that
location and is predicted to then be the most dominant phenotype in a with trait z.
in contrast, in community B, the black phenotype is predicted to not be as dominant.
This trait value then is the optimal trait value, given the potential species pool, for that
community. Note: in this example, growth rates are only influenced by E. However,
extensions of TDT (see text) can assess how the growth rate of a given trait value
then is influenced by the presence and dominance of other trait values. Such trait–trait
interactions could then modify the shape and breadth of each growth curve.
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in a given trait, z, translates to variation in per capita growth rate across an

environmental gradient. This example assumes that all individuals in a given

community ultimately compete for similar limiting resources, and that there

is an optimal environment where growth is fastest (Fig. 2). Although our

approach starts with a single trait, trait-based models can straightforwardly

incorporate multiple, correlated traits (Savage et al., 2007; see also

Appendix). By incorporating temporal environmental forcing into the

growth function, TDT predicts how the distribution of traits,C(z), responds

to both biotic and abiotic drivers (Norberg et al., 2001; Savage et al., 2007).

The shape and the dynamics of the trait distribution ultimately reflect a

balance between two rates—the introduction/immigration of traits, I, into

an assemblage and the outcome of variation in the performance, f, of those

traits within the assemblage. A general trait-based equation for growth and

immigration is given by

dC zð Þ
dt

¼ f z,E,C zð Þ½ �C zð Þ+ I z,E,C zð Þ, Clandscape zð Þ� �
(3)

Here, we now explicitly include the effects of the environment, E, and

the trait distribution C(z) as part of the growth, f, and immigration, I, func-

tions because they can influence both via environmental change, competi-

tion, facilitation, sampling effects, or other biological interactions such as

density dependence (Savage et al., 2007). The second term, the immigration

function, I, reflects the external input of individuals into the community

stemming from dispersal as well as the introduction of traits into the assem-

blage from other factors including evolutionary processes (mutations) and

potential seed banks. The immigration function, I, reflects dispersal behav-

iour of individuals and is a function of other ecological factors, such as organ-

ismal traits, and may be influenced by the abundance of that trait already in

the local community C(z) as well as the abundance of that trait in the larger

landscape, Clandscape(z) (see Gilbert and DeLong, 2015; Laskowski et al.,

2015; Schmitz et al., 2015 in this issue).

Next, we use two assumptions to constrain the form of Eqs. (2)–(3). First,

a central tenet of TDT and a well-grounded concept in ecology and evo-

lution are that across an environmental gradient, E, organisms will tend

to have a unimodal functional response in their performance and fitness

functions (Fig. 2). As a result, a shift in the environment, E, will affect

the per capita population growth rate and thus the traits that are dominant

in the community or assemblage (Davis and Shaw, 2001; Whittaker

et al., 1973) and the rate of trait evolution (Levins, 1968). Second, there
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are specific traits that link environmental drivers to individual growth rate,

and the trait driven per capita biomass growth rate, dC(z)/dt (Fig. 1; Arnold,

1983). The performance or growth function f(z) then is a result from an

environment-mediated trade-off between traits, such as investment in

growth versus defence or from investment in growth rate versus desiccation

resistance. As a result, for a constant environment, E, there are optimal trait

values, zopt, that maximize the growth function given in the environment.

In the case of a single-trait optimum, we approximate this as a symmetric

function such as a Gaussian or quadratic trade-off f zð Þ∝ 1� z�zopt
σ2

� �2h i
,

where σ2 is the trait breadth of the trade-off function. If the environment

is constant and immigration, I, is zero, individuals with traits that match,

zopt, will gradually replace all other individuals, and the trait distribution will

collapse on a single point for the optimal trait value zopt (Norberg et al.,

2001). Thus, TDT is consistent with a competitive trait hierarchy view

of assemblage interactions (Freckleton and Watkinson, 2001; Goldberg

and Landa, 1991; Kunstler et al., 2012; Mayfield and Levine, 2010) as well

as a population source–sink view of assemblage (Pulliam, 1988) and

metapopulation perspective of trait dynamics across environmental gradients

(Davis and Shaw, 2001). As we discuss below, additional biotic and abiotic

interactions and processes can also be shown to influence the shape of the

trait distribution via the growth and immigration functions (see Weiher

and Keddy, 1995).

3. PREDICTIONS OF TDT

Next, we emphasize the central predictions of TDT. These predic-

tions are also summarized in Table 1 in terms of how different measures

of the trait distribution can provide novel insight and predictions regarding

the main drivers of the current composition of the species assemblage as well

as the future dynamics of the species assemblage.

Prediction (1): Shifts in the environment will cause shifts in the trait dis-

tribution (Fig. 3; Table 1).

Prediction (2): The difference between the optimal trait and the observed

mean trait, as well as the trait variance, provides a measure of the capacity

of a community to respond to environmental change (Figs. 3 and A1;

Table 1).

Shifts in the abiotic or biotic environments, represented by E and C(z),

respectively, will lead to corresponding shifts in the community trait distri-

bution. The magnitude of the shift over some time and the rate of change of
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Table 1 Summary of the Core Predictions from Trait Driver Theory for How the Different
Central Moments of the Trait Distribution Will Respond to Differing Biotic and Abiotic
Forces and How They Will Then in Turn Influence Community Dynamics and Ecosystem
Functioning
Moment of
Community Trait
Distribution, C(z)

Predictions for Rate of
Community Response to a
Changing Environment Predicted Ecosystem Effects

I. Mean (a) Will shift if environmental

change alters value of zopt
and time scales are not too

rapid and oscillatory

(b) Lags zopt by an amount that

depends on rate of change in

environment, rates of

immigration, and the forces

that influence the variance

(i) Will shift productivity

according to form of

growth equation, f

II. Variance (a) Decreases with strong abiotic

filtering

(b) Decreases due to

competitive exclusion by

individuals with trait zopt
(c) Can increase with increased

immigration, competitive

niche displacement, and/or

temporal variation in zopt
due to a variable

environment

(d) Under neutral theory, if no

immigration or mutation,

variance will decrease over

time so as to decrease

response abilities over time

(i) Increased variance

implies lower

productivity for fixed

or stable environment

(ii) Increased variance

accelerates community

response to

environmental

changes

(iii) Increased variance will

lead to increased

stability of ecosystem

functioning by

reducing the lag of �z
and zopt in varying

environments

III. Skewness (a) Skewness values > or <
0 can reflect a lag between �z
and zopt and a rapidly

changing community due to

an environmental driver or

extreme limit to a trait value

(b) Increases in skewness can

indicate a response to rapid

environmental changes or

the importance of rare

species advantages in local

coexistence

(i) Depending upon

kurtosis and variance

value, productivity

should be reduced

compared with a

community with

similar variance but

skewness equal to zero

Continued
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the shift can both be calculated from Eq. (2). According to Eq. (2), the value

of the optimal trait will change with the environment (e.g. Ackerly, 2003),

while the mean trait of the community will approach the optima but with a

lag in time according to how long it takes for either trait plasticity and/or the

processes of species sorting and selection to act (Ghalambor et al., 2007). In

environments where the optimal trait value is changing quickly relative to

generation times or plasticity, there may be little capacity for the mean com-

munity trait, �z, to track these changes. In such circumstances, �z, may never,

or only rarely, be expressed at an optimal value for the current environment.

Nonetheless, we expect that for most communities, the difference between

the optimal trait, zopt (E), and the observed mean trait, �z, or Δ(E), will be a
measure of how the community has responded/will respond to environ-

mental change. Norberg et al. (2001) derive the general expression

Δ Eð Þ¼ zopt Eð Þ� �z (4)

Table 1 Summary of the Core Predictions from Trait Driver Theory for How the Different
Central Moments of the Trait Distribution Will Respond to Differing Biotic and Abiotic
Forces and How They Will Then in Turn Influence Community Dynamics and Ecosystem
Functioning—cont'd
Moment of
Community Trait
Distribution, C(z)

Predictions for Rate of
Community Response to a
Changing Environment Predicted Ecosystem Effects

IV. Kurtosis (a) Positive kurtosis – a more

peaked distribution – reflects

competitive exclusion or

other types of biotic

exclusion

(b) Kurtosis close to �1.2

reflects a uniform

distribution consistent with

uniform niche partitioning

(c) More negative values could

reflect the coexistence of

contrasting ecological

strategies, recent or sudden

environmental change

(i) If the trait mean equals

zopt, forces that

decrease kurtosis will

decrease productivity

while forces that

increase kurtosis will

increase productivity

(ii) In a temporally varying

environment, more

negative kurtosis

values will lead to

increased stability of

ecosystem functioning

by reducing the lag of �z
and zopt

Trait Driver Theory (TDT) can incorporate each of these forces via the shape of the trait biomass dis-
tribution, C(z), to then make specific predictions for how each can drive the dynamics of C(z) and eco-
system functioning (see text). Parameterizing predictions for specific cases depends upon the traits that
affect the growth rate, f. Here �z is the average observed trait value and zopt is the optimal trait value for an
given environment, E.
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where Δ(E) quantifies the community trait ‘lag’ in relation to the current

environment. This measure is analogous to the ‘lag load’ in evolutionary

theory (Maynard Smith, 1976). We can thus define dΔ/dt as the response
capacity of a community. Equation (4) predicts that capability of the assem-

blage to respond to directional shifts in the environment will be directly pro-

portional to the trait variance, dΔ=dt∝V . Importantly, within TDT,

directional selection for a given optimal trait value need not always lead

to an increase in per capita growth rate, f. Because of trade-offs between traits

and frequency and density-dependent effects on performance and fitness, the

performance (and fitness) associated with the new optimum value likely dif-

fers from the fitness and growth rate in the previous environment

(Antonovics, 1976; Dieckmann and Ferrière, 2004; Ferriere and

Legendre, 2013). For example in Fig. 3, we highlight a hypothetical example

of a shift in the community trait distribution fromwet to dry that comes with

Individual performance:

Trait distribution:

Environment Historic
(e.g. wet)

Current
(e.g. dry)

OptimumH

EnvironmentA
ve

ra
ge

 in
di

vi
du

al
pe

rf
or

m
an

ce

OptimumC

Traits related to growth

rate, acquiring and
allocating resources,

etc., and ultimately
fitness

Frequency of a trait
expressed for all

individuals (across all

species) within a

community

Figure 3 Conceptual diagram linking changes in optimal traits in changing environ-
ments with the frequency distributions for that trait in historic versus current environ-
ments. In this example, the optimal trait value (dotted line) has shifted to the right.
Individual performance (growth, fitness, etc.) is highest at the optimal trait expression
in an environment. Note: because the response of an assemblage cannot be instanta-
neous, the trait distribution has an increased skew. Further, since the highest trait fre-
quencies are not yet at the optimal trait expression, the average performance in the
current environment is lower than in the historic environment.
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a decrease in optimal performance. Extensions of TDT can in principle

include these effects (Savage et al., 2007).

In sum, predictions 1 and 2 formalize Chapin et al.’s conceptual frame-

work (Chapin et al., 2000) for the development of a predictive trait-based

ecology. In the case of multiple traits underlying growth, f, differing trait

combinations could lead to similar growth rates in differing environments

(see also Marks and Lechowicz, 2006). We note that these predictions

implicitly ignore the effects of frequency dependence but elaborations of

TDT can include these effects (see equation 5 in Savage et al., 2007).

Prediction (3): The skewness of the trait distribution can be an indicator of

past or ongoing immigration and/or environmental change due to lags

between growth, reproduction, and mortality (Table 1).

Because of time lags between environmental change and the time scale of

organismal responses (growth, demography, etc.), the trait distribution of an

assemblage will not be able to instantaneously track environmental change,

and skewness in the trait distribution will develop (see also Figs. 3 and A1).

Alternatively, skewness may reflect differential immigration of traits from

one side of a habitat or a community that contains ‘sink’ populations

(Pulliam, 1988) supported via immigration (see also Pawar, 2015 in this

issue). Neutral theory (Hubbell, 2001), in which traits have no demographic

effects, could also lead to skewed distributions due to neutral trait evolution.

The implication is that trait-based ecology can infer the dynamics of trait

assemblages via assessing the shape of contemporary trait distributions.

Combining information on the shape trait distributions with additional

information such as dispersal history and/or size distributions would help

separate lag effects from drift and differential immigration.

Prediction (4): The rate of change of net ecosystem productivity in

response to environmental change can be predicted via the growth func-

tion, f, and the shape of the community biomass-trait distributionC(z) at

some initial time (Table 1).

In the simple case of a single trait with a single environmental driver,

Norberg et al. (2001) derived a general expression linking the dynamics

of the trait distribution by noting Eq. (2), Eq. (3) can be approximated as

dCTot

dt
� f z,E,C zð Þð Þz¼�z +

@2f z,E,C zð Þð Þ
@z2

����
z¼�z

V

� �
CTot + I (5)

Equation (5) follows from a Taylor expansion that effectively linearizes

the equations. If the terms in brackets depend on total biomass, dCTot/dt

would scale non-linearly with total biomass, but in the simplest case, these

262 Brian J. Enquist et al.



terms are independent of total biomass implying that production scales lin-

early with total biomass. In Eq. (5), the net primary production, CTot/dt, is

equal to the growth rate of the mean community trait, �z, plus the second

term that accounts for how much variation there is in the community trait

distribution,V. Because the growth function, f(z,E), has a maximum at zopt,

we expect the second derivative term to be negative, as long as the average

observed trait value, �z is in the neighborhood of the optimal trait value, zopt
(Norberg et al., 2001; see also discussion in Appendix) reflecting the increas-

ing reduction in growth rate as trait values increasingly differ from zopt (see

Fig. 2 and Eq. 4). The unimodal shape is the simplest assumption requiring

only the mean and variance. There is reason to expect that f can be approx-

imated as unimodal. For example, growth rates typically exhibit unimodal

response with measures of temperature, pH, etc. (McGill et al., 2006).

Again, the term I gives the addition of biomass through immigration/

dispersal.

Prediction (5): Within a community whose growth rate depends on a sin-

gle trait, an increase in the variance of that trait will lead to a decrease in

net primary production (Table 1).

An additional prediction is that for communities whose growth is driven by a

single key trait, larger trait variance, V, will decrease the net primary pro-

duction for the whole community because a higher proportion of individ-

uals differ from zopt (Norberg et al., 2001). This idea of a trade-off between

short-term productivity and long-term response to environment is reflected

by agricultural imperatives with agricultural issues, where short-term pro-

ductivity is emphasized and variance in traits is minimized in trait values

and short-term productivity is maximized. Elaborations of TDT have shown

that incorporating multiple limiting resources, multiple traits, and trait

covariation (Savage et al., 2007) can weaken, nullify, or even reverse the

predicted negative relationship between dCTot/dt and V.

From Eqs. (3) and (4), the rate at which a community can track environ-

mental changewill be greater when there is greater trait variance. Intuitively,

greater variance leads to more extreme traits being immediately available to

respond to environmental change. Thus, the rate of responsewill also depend

upon the specific form of the growth function f (e.g. for a given value of z,

how does f vary across an environmental gradient? see Savage et al., 2007 and

discussion in Appendix). For example, if f is a simple Gaussian or polynomial

function with E (Fig. 1), then the value of dΔ/dt can be approximately pro-

portional to the community trait variance, V. Building on the work of

Norberg et al. (2001) and Savage et al. (2007), these equations can be

extended to include higher-order moments such as skewness and kurtosis.
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3.1 Extending TDT via Recasting and Assessing Different
Ecological Hypotheses About Diversity and Trophic
Interactions

TDT predicts that over time only one phenotype should dominate a given

environment. An important question is what maintains diversify (trait var-

iation) within an assemblage? According to TDT trait, variance can be

increased by many different ways (also see Dell et al., 2015; Gilbert and

DeLong, 2015; Pawar, 2015 in this issue; Pettorelli et al., 2015). Immigra-

tion, I, from outside the assemblage, as well as from a directionally shifting

or a temporally variable environment (Norberg et al., 2001; Savage et al.,

2007), can increase and/or maintain trait variation. Further, theoretical

elaborations of TDT have shown that the diversity of phenotypes (traits)

present in a given assemblage can be influenced by trade-offs between

traits that influence growth. For example, trade-offs between allocation

to predator defence and growth rate (Norberg et al., 2001; Savage

et al., 2007) can increase the variance of a given trait. In a variable envi-

ronment, correlations between traits that underlie the growth function, f,

lead to the survival of organisms with trait values that are less favourable in

the current environment but may be well suited for new environments

that arise. Thus, phenotypic trait correlations among traits can ramify to

have quantitative effects on ecosystem dynamics (lowering NPP) and

enable assemblages to better track environmental change (Savage

et al., 2007).

Additionally, trait variation can also stem from additional ecological

hypotheses for biological diversity. An exciting aspect of TDT is that differ-

ing ecological hypotheses based on species richness can be recast in terms of

traits. In Table 1 and Fig. A1, we overview the predictions of the different

theories as recast in the light of TDT. As a result, TDT can then be used to

‘scale up’ the implications of many differing classic and current hypotheses

for species richness via the assumptions of trait distributions implicit in these

theories. Another exciting potential of TDT is to show (i) how different tro-

phic interactions and variation in traits controlling ‘predation risk’ and ‘prey

selection’ would then influence community trait and size distributions (see

Pettorelli et al., 2015 in this issue) and (ii) how individual trait variation

could potentially have opposing effects on predator–prey dynamics (see

Gilbert and DeLong, 2015 in this issue). TDTwould then offer a framework

to show how these differing ecological processes then scale up to influence

ecosystem functioning.

As we show in Appendix A.1 we can use TDT to recast several different

ecological theories in terms of the distribution of fucntional traits. Different
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ecological theories based on species richness (neutral theory, abiotic filtering,

competitive exclusion, Chesson’s storage effect, or rare species advantages;

see discussion in Appendix) as well as the effects of abiotic processes (shifts

due to environmental change, disturbance) will uniquely influence the shape

of the community trait distribution and the potential of the assemblage to

maintain diversity, as reflected in changes in the trait variance, dV/dt.

The relative strengths of abiotic, biotic, and neutral processes will lead to

different shapes of trait distributions that will have different implications

for responses of community to directional shifts in the environment as well

as ecosystem functioning.

4. EXTENDING AND PARAMETERIZING TDT

4.1 Scaling from Individuals to Ecosystems Using MST
So far, TDT assumes that there is no variation in organismal size. Instead, the

total biomass associated with a trait, z, is denoted by C(z). This notation

avoids ever needing to account for individual organismal mass, M, or even

the number of individuals with mass. However, body size can vary

greatly—it is also an important trait that influences variation in organismal

metabolism (Peters, 1983), population growth rate (Savage et al., 2004), and

abundance (Damuth, 1981; Enquist et al., 1998). The scaling equations in

MST differ from TDT so far as they are phrased in terms of individual mass.

In order to integrate these theories, we use three insights fromMST (Enquist

et al., 2007b, 2009; Savage et al., 2004; West et al., 1997, 2009) to explicitly

formulate TDT to work across scales in organismal size, M, and environ-

mental changes or gradients in temperature, T. As we show, MST provides

the basis to formally link traits, organismal growth rate, and ecosystem fluxes

(Enquist et al., 2007a,b).

First, MST is explicit about how the organismal growth is dependent

upon the size of the organism. In the case of MST, we start with how organ-

ismal biomass growth rate, dM/dt, is related to whole-organism metabolic

rate, B, and organismal mass, M, as

dM

dt
¼ b0 zð ÞMθ (6)

where b0(z) is a metabolic coefficient that depends on a single or set (mean-

ing z is a vector) of traits. The allometric scaling exponent θ is hypothesized
to reflect the branching geometry of vascular networks (Enquist et al.,

2007b). Theory and empirical data point to θ� 3=4 for large size ranges

(Enquist et al., 2007c; Savage et al., 2008). Equation (6) has recently been

265Scaling from Traits to Ecosystems



shown to be a good characterization of tree growth (Stephenson et al., 2014)

and is a specific case of a more generic growth function (Moses et al., 2008;

West et al., 2001) that can be applied to both plants and animals. While we

focus here on a specific plant growth model, we note that other trait-based

models have recently been developed for animals and phytoplankton

(Litchman and Klausmeier, 2008; Muller et al., 2001; Ricker, 1979; West

et al., 2001), and they could also be used to parameterize TDT. Below,

we elaborate Eq. (6) to explicitly include the traits for plants that underlie

b0 and how we can use this equation as the basis for a general trait-based

growth function.

To integrate MST into TDT, we first recognize that, C(z), the biomass

associated with trait z can be expressed as C zð Þ¼ Ð dMC z,Mð Þ¼Ð
dMN z,Mð ÞM , where C(z,M) is the mass density of individuals with both

trait value z and individual mass M, while N(z,M) is the number density of

individuals that have both trait value z and individual massM. In this expres-

sion, we have integrated over all possible values of mass,M, so that we have

the total biomass of all individuals with trait z. Furthermore, note that inte-

grating this over all traits, z, gives the total biomass, CTot¼
Ð
dzC zð Þ¼Ð

dz
Ð
dMN z,Mð ÞM .

To integrate MST into TDT, we solve for the conditions of steady state

where N(z,M) is not changing in time. It can be shown (see Appendix) that

the equation for the scaling ofNPPwith the total biomass of the assemblage is,

dCTot

dt
¼ b0 zð ÞM�1=4
D E

C
CTot (7)

where dCTot/dt scales isometrically with CTot and the C subscript denotes

that the average, denoted by brackets h�i, is taken with respect to the bio-

mass. This equation is in the most generic form of a general TDT equation.

Note that the TDT growth function, f, is now

f zð Þ¼ b0 zð ÞM�1=4 (8)

and can be expanded and expressed in terms of the biomass-weighted central

moments of the trait z, such as the variance, skewness, and kurtosis (see

below). Again, the exponent,�1/4 is the idealized case and empirical values

that may deviate from θ� 3=4 can be used.

4.1.1 Incorporating Environmental Trade-Offs in the Growth Function, f
Equation (8) alone would predict that the per capita growth rate will increase

forever as the trait, b0, and mass-specific metabolic rate increase. In reality,
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though, there is some range of trait values at which the organism can grow.

This is because there are trade-offs in performance and fitness: decrease in

growth when, for a given value of E, the trait value gets either too small

or too large. In the case of a given leaf trait such as leaf size or leaf investment

(closely associated with variation in photosynthetic rates and the specific leaf

area (SLA)), at some point, continued increases in leaf nitrogen may ulti-

mately limit resource uptake as high N would result in individuals more

prone to herbivores, pathogens, etc. and/or will result in water transport

demands that would increasingly be maladaptive for a given local environ-

ment. Ultimately, one cannot have an infinitely large leaf, an infinitely thin

leaf, or a plant that is all leaf area. Thus, deviation away from b0,opt would be

associated with a trade-off between specific trait values and plant perfor-

mance (such as growth rate, survivorship, and/or reproduction; see also

Ghalambor et al., 2007).

Incorporating trade-offs between trait values, the environment, and per-

formance is central to TDT.We can incorporate these trade-offs in a general

form by multiplying the scaling relationship by a quadratic function. As a

result, f(b0) is maximal at the optimal trait, b0,opt, and the niche width defined

by σ2b0 where

f zð Þ¼ b0 zð ÞM�1=4 1� b0� b0,opt
� �2

σ2b0

 !
(9)

Here, the second term is the trade-off function, and c0 is an overall con-

stant coefficient. Expressing f(b0) across an environmental gradient, f(b0, E),

would then reveal a unimodal growth function (Fig. 2).

The second insight from MST shows that the metabolic normalization,

b0, can be linked to specific traits. For the plant growth function, building on

the insights from the relative growth rate literature (Evans, 1972; Lambers

et al., 1989; Poorter, 1989), Enquist et al. (2007b) derived an extension

to Eq. (6) that explicitly details the traits that together define b0 and hence

f so that

b0∝
c

ω

aL

mL

	 

_ALβL (10)

Equation (11) shows that, in addition to plant size,M, the rate of growth

is governed by the scaling exponent, θ, and five traits: (i) _AL, the net leaf

photosynthetic rate (grams of carbon per area per unit time); (ii) aL/mL,

the SLA, the quotient of area of the leaf, aL, and the mass of a leaf, mL;
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(iii) ω, the carbon fraction of plant tissue; (iv) c, the carbon use efficiency of

whole-plant metabolism, and (v) βL, the leaf mass fraction (the ratio of total

leaf mass to total plant mass) which is a measure of allocation to leaves. As a

result, we can parameterize TDT with specific traits that underlie b0.

5. ADDITIONAL PREDICTIONS OF TDT

In the second column of Table 1, we summarize additional TDT pre-

dictions for scaling up community or assemblage trait distributions to predict

several ecosystem-level effects. Specifically, the shape of the trait distribution

as measured via the central moments of the distribution.

Prediction (6): Ecosystem net primary productivity, dCTot/dt, will scale

with the total biomass but will be influenced differently by the mean

and variance of the community trait distribution.

A third insight from MST allows us to more formally link TDT with MST

by including organismal mass dependence into TDT. In particular, most

assemblages of organisms will be characterized by a distribution of sizes.

For plants, following the arguments in Enquist et al. (2009), we can substi-

tute the distribution of the number of individuals as a function of their size,

M, or the size spectra, N(M). For the idealized case of θ� 3=4, they show

that N Mð Þ∝M�11=8 and link the total biomass, CTot, with the size of the

largest individual, Mb, where Mb∝C
8=5
Tot. This allows us to consider a few

special cases of Eq. (7) that relate TDT and scaling equations already in

the literature.

In the case of a given assemblage where there is no size distribution and

only a single mass value,M*, or a very small range of mass values, the scaling

of NPP becomes

NPP¼ dCTot

dt
¼ M*ð Þ�1=4

b0 zð Þh iCCTot (11)

The term (M*)�1/4 can be thought of as an overall normalization to the

growth function f(z) from TDT. As such, this result reveals that TDT, as

originally formulated (see Eq. 3), ignores variation in individual mass. Thus,

based on Eq. (6), growth functions within TDT should have a roughly

(M*)�1/4 hidden with the normalization constant for their growth function.

In the case where (i) organisms within the community or assemblage can

differ greatly in their sizes; (ii) z andM are uncorrelated; and (iii) the number

density is a separable function, such that N z,Mð Þ¼N Mð ÞN zð Þ; it can be
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shown that the growth equation can be expressed in two different ways.

Each way depends on how one averages the trait distribution. In the first

case, we have

dCTot

dt
¼ k b0 zð Þh iC3=5

Tot (12)

and in the second case, we have

dCTot

dt
¼ k b0 zð Þh i M�1=4

D E
C
CTot (13)

where k is a proportionality constant. Equation (13) is equivalent to

Eq. (12) but expresses the growth function more in terms of the TDT

framework such that the right side appears to have an overall linear

dependence in CTot. As a result, in Eq. (12) we have a mixture of types

of averages, with hb0(z)i being the abundance average of the function

b0(z), while hM�1/4iC is the biomass average of M�1/4. Both equations

are equivalent ways to express the scaling of NPP function. Equation (12)

is a more simple expression and only involves using the abundance average

of the trait distribution. Equation (12) consolidates the organism mass aver-

age with the 3/5 scaling dependence of CTot. These derivations help to

clarify when trait-based studies should use biomass- or abundance-

weighted values.

Both equations assume a community steady-state approximation where

N(z,M) is not changing in time. If this is violated (e.g. the community trait

abundance or number distribution N(z,M) is changing), then deviations

from Eqs. (12) and (13) are expected. Nonetheless, these equations provide

a basis for linking the scaling of organismal growth rate and trait variation of

individuals with ecosystem-level processes. For all of these equations and

cases, the functions inside the averages can be expanded in terms of moments

as done for TDT for biomass-weighted averages or as done in Savage (2004)

for abundance-weighted averages.

Putting all of this together with Eq. (5) yields the prediction that Eqs. (12)

and (13) are then modified by the shape of the trait distribution, where for a

given E, growth is reduced with departure from b0,opt,

dCTot

dt
� k b0 zð Þh i+ 1� b0� b0,opt

� �2
σ2b0

 !
d2f

dz2

����
z¼�z

V b0 zð Þð Þ
" #

C
3=5
Tot (14)
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The second term captures the reduction of production due to deviation

from bopt. Equation (14) represents a formal integration of foundations of

TDT from Norberg et al. (2001) with MST from West et al. (1997) and

Enquist et al. (2009). Because the growth function, f(z,E), has a maximum

at zopt (Fig. 2), we expect the second derivative term, d2f/dz2, to be nega-

tive, as long as �z is in the neighbourhood of zopt. Importantly, Eq. (14)

enables one to parameterize TDT with a specific trait-based growth func-

tion. Further, it enables the integration of physiological performance curves

for how the key integrative trait, b0, varies across a given environmental gra-

dient, E. Equation (8) predicts that dCTot/dt will increase with increasing

community biomass, CTot. Note, here, the role of the relative breadth of

species performance curves (see Fig. 1) is represented by σ2b0 .

Prediction (7): Equation (14) generates specific and testable relationships

for the scaling of trait means, dispersion, and ecosystem production (see

Table 3).

Equation (14) predicts that there is a range of mean trait values for which

increases in the variance of traits,V(b0), will decreaseNet Primary Productivity,

dCTot/dt, and shifts in hb0i will lead to corresponding shifts in dCTot/dt. This

will occur whenever the mean trait value is near the maximum of the growth

function,which should occur frequently because evolution is driving themean

trait to match the optimal trait with some lag time. However, there are also

mean trait values forwhich increases in the variance of traits,V(b0), will increase

Net Primary Productivity (NPP), dCTot/dt, and shifts in hb0i will lead to

corresponding shifts in dCTot/dt. This will happen when the mean trait value

is further from the optimal trait value and below an inflection point in the

growth function thatoccurs for small trait values (see the exampleof a shift from

historically wet climate regime to a dry regime in Fig. 3). Intriguingly, this sce-

nario suggests that trait variance can potentially act to either increase or decrease

NPPdepending on if the current trait distribution is close to the local trait opti-

mumor not. So, if the assemblage is close to the optimal value, increases in trait

variance will typically decrease NPP. This contrasts with biodiversity theories

in which increasing variance (increased trait diversity) tends to increase NPP.

Importantly,Eq. 14 shows the influenceof variation,V, of the traits that under-

lie b0 observed within the community.

Integrating MST into a more generalized TDT lists several key traits for

TDT. We explore predictions of TDT in the special case of a single-trait

driver such as SLA¼ (aL/mL). First, a change in the environment will likely

be associated with a shift in the mean value of SLA. Second, using Eqs. (12)

and (14), we expect that
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dCTot

dt
∝ SLAh i� VSLAh ið ÞC3=5

Tot (15)

Thus, according to Eq. (15), a shift that increases the abundance-

weighted mean trait value of hSLAi will lead1 to an increase in NPP. Pre-

liminary support of this prediction comes from empirical studies that have

noted that increases in the mean community SLA are closely linked with

increases in ecosystem productivity (Garnier et al., 2004; Violle et al.,

2007) and follows from TDT. Third, due to the productivity–variance

trade-off predicted by TDT, holding the other variables constant, an

increase in the community variance in SLA or VSLA will lead to a decrease

in productivity so long as the mean community SLA is close to the

optimum value.

As we discuss below, TDT provides a foundation that can bemodified by

additional factors. When there are multiple trait shifts that may covary, mea-

suring all of the traits listed in Eq. (11) would allow more detailed predic-

tions. Of all the traits specified by Eq. (11), there appears to be evidence that

SLA may vary more across environmental gradients than other traits and be

more important for linking changes in a trait driver or environment, E, with

variation in local plant growth (see Appendix). It varies across taxa (up to 3

orders of magnitude or approximately 1000-fold) and directionally varies

across environmental gradients in soil moisture, irradiance, and temperature

(see Garnier et al., 2004; Poorter et al., 2009; Wright et al., 2005). SLA has

also been noted to vary considerably within species in response to local

changes in climate and abiotic conditions (Cornwell and Ackerly, 2009;

Jung et al., 2010; Shipley, 2000; Sides et al., 2014).

6. METHODS: ASSESSING TDT ASSUMPTIONS AND
PREDICTIONS

6.1 Quantifying the Shape of Trait Distributions
In order to assess predictions of TDT, it is necessary to quantify the biomass

distribution of traits, C(z), in a species assemblage. This involves enough

measurements of the trait values and body masses to obtain accurate

1 Note: Because the growth equation f is for more instantaneous measures of growth, this prediction is

based on rates of more instantaneous NPP and not necessarily annual net primary production. So, accu-

rate testing of this predictionwith annual productivity data shouldmake sure to standardize for growing

season lengths.
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estimates of the underlying distributions, as guided by sampling theory and

statistics (Baraloto et al., 2010; Paine et al., 2011). The sampling must occur

across all individuals within our group and thus incorporates both inter- and

intraspecific trait variability (see Appendix and Violle et al., 2012). The sam-

pling protocols often make choices that limit accurate measurements of

within-species variability more than across-species variability. Indeed,

simultaneous measurements of intra- and interspecific trait measures are

rarely collected (Ackerly, 2003; Baraloto et al., 2010). However, intraspe-

cific variation in traits is important to determine the breadth of the distribu-

tion (Sides et al., 2014; Violle and Jiang, 2009). Trait abundance or biomass

distributions, C(z), can be approximated through sampling (see Appendix),

so that predictions of TDT can be tested without explicitly measuring the

traits of all individuals.

There are two reasonable approximations for community trait distribu-

tions. The first approximation method calculates the weighted trait distribu-

tion by taking the mean species trait value and multiplying by a measure of

dominance (cover, biomass, abundance; Grime, 1998). This method can be

implemented by calculating the central moments of the joint distribution. In

the Appendix, we show the equations used to approximate the community

trait moments in particular the community-weighted mean, variance, skew-

ness, and kurtosis (CWM,CWV,CWS, and CWK). Community-weighted

metrics, however, ignore intraspecific variation. Increasingly, it is becoming

clear that intraspecific variation can contribute to a considerable amount of

trait variation (Messier et al., 2010) and that relying on species mean trait

values may not provide a robust measure of the shape of a trait distributions

(Violle et al., 2012).

A second method utilizes sampling theories to help avoid the time-

consuming work of sampling the traits of all individuals. Subsampling

individuals can be used to better approximate how intraspecific variation

influences the community distribution. In the Appendix, we develop this

new method (see discussion in Appendix). The method utilizes

subsampling individuals to obtain a better approximation of how intraspe-

cific variation influences the community distribution. By subsampling indi-

viduals to estimate intraspecific trait variation within each species, one can

begin to incorporate intraspecific variation around mean trait values for

each species. We expect that utilizing this method in addition to the incor-

poration of how MST influences the scaling of the number of individuals

will improve estimates for the shape of trait distributions. In short, by

subsampling individuals for each species within a given assemblage, one
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can begin to incorporate intraspecific variation around mean trait values for

each species.

6.2 Testing Predictions of TDT
We tested several of the specific TDT predictions (Table 1) and assumptions

using several examples that allow us to assess temporal and spatial variations

of trait distributions. First, we searched the literature to determine if trait

distributions measured from individuals actually do shift across local envi-

ronmental gradients. Second, we assessed the dynamics of trait distributions

and ecosystem carbon flux measures using data from an elevational gradient

in Colorado. Third, we assessed the temporal dynamics of trait distributions

and ecosystem net primary productivity using the Park Grass Experiment

(PGE) from Rothamsted, UK. Lastly, to assess potential linkages with larger

scale biogeographic gradients, we review recent studies that assess shifts in

trait distributions across large-scale biogeographic environmental gradients.

We primarily focus on assemblage variation in one trait, SLA, because it

appears to vary more than other traits in Eq. (11). Thus, we begin to assess

predictions from TDT (Table 3) by substituting the mean SLA value for

<b0>. If other traits in Eq. (11) also vary or covary with each other across

gradients, TDTwould allow us to explore this as well. For example, a shift in

the mean community carbon use efficiency (or c) will lead to a decrease in

NPP as observed (DeLucia et al., 2007). Utilizing Eq. (11), we can now

codify several additional TDT predictions based on SLA (see Table 3).

6.3 Shifts in Trait Distributions and Ecosystem Measures
Across Local Abiotic Gradients

We tested several predictions generated by TDT (Table 1) with data col-

lected along an elevational gradient in Colorado. We (Henderson, Sloat,

and Enquist) have measured community composition, ecosystem fluxes,

and traits of all individuals in several communities across an elevational gra-

dient within subalpine communities near the Rocky Mountain Biological

Laboratory (RMBL, Gunnison Co., CO, USA). Sites ranged from 2460 to

3380 m and had similar slope, aspect, and vegetation. The lowest elevation

site is characterized as a semi-arid sagebrush scrub, whereas subalpine

meadow communities dominate at the higher elevations. To estimate

C(z) leaf traits and biomass was measured from every individual within

a 1.2�1.2 m plot. Measures of total ecosystem carbon production,

community-weighted SLA, and variances were obtained by harvesting
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biomass and measuring total ecosystem carbon fluxes or net ecosystem

production (NEP; μmol CO2 m
�2 s�1). A more detailed listing of the

methods used in our analyses is given in the Appendix.

6.4 Local Tests of TDT Predictions
We next tested several predictions generated by TDT (Table 1) with data

from the PGE from Rothamsted, UK. The PGE follows grassland plant

community composition over a 140-year period. Started in 1956, it is the

oldest ecological experiment in the world (Silvertown et al., 2006). The

dataset is unique as it allows us to assess community responses to an environ-

mental driver—the experimental altering of soil nutrient availability.We use

this dataset to assess how a change in the environment, E, in this case soil

nutrients, differentially influences community composition and ecosystem

function via the trait distribution, C(z). Within this experimental setup,

the main environmental driver is a nutrient addition in the fertilized plot.

We first focused on quantifying community SLA frequency distributions.

However, as a more direct test of TDT, we also assessed two other key traits,

plant height and seed size (see Appendix). To approximate the trait distri-

bution, C(z), we assigned species mean traits to species found within the

PGE from the LEDA database (Kleyer et al., 2008). A detailed listing of

the methods used in our analyses is given in the Appendix including back-

ground of the PGE.

7. RESULTS

7.1 Community Trait Shifts Across Local Gradients
Numerous studies have documented shifts in the traits of communities and

assemblages across environmental gradients (Ackerly, 2003; Choler, 2005;

Fonseca et al., 2000; Swenson and Enquist, 2007). However, many studies

generally calculate a species mean trait as part of a species list, thus ignoring

intraspecific variation. In contrast, several recent studies have measured traits

within communities to assess community-level trait shifts (Albert et al.,

2010; Gaucherand and Lavorel, 2007; Hulshof et al., 2013; Lavorel et al.,

2008). For example, Cornwell and Ackerly (2009) show that across a gra-

dient of water availability, the community mean and intraspecific mean

SLA significantly shifted such that drier environments have lower mean

SLA (Fig. 4A).
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7.2 Shifts of Community Trait Distributions Across
Environmental Gradients

Data from our elevational gradient at the Rocky Mountain Biological Lab,

Gothic, CO (see Bryant et al., 2008; Sides et al., 2014; Sloat et al., 2014)

0.05

1.9 2.0

Log10 community-weighted mean SLA Community-weighted variance SLA

3.0 3.5 4.0 4.5 5.02.1 2.2 2.3 2.4

10

30

50
70

April gravimetric soil water content (g water/g soil)

0.10 0.20 0.30
0 20

BA

DC
SLA (mm2 mg−1)

40 60

3380 m
Plot elevation

3155 m
2815 m
2710 m
2468 m

0.
10

0.
08

0.
06

0.
04

0.
02P
ro

ba
bi

lit
y 

de
ns

ity

S
pe

ci
fic

 le
af

 a
re

a
(m

m
2 /

m
g−1

)
P

ar
tia

l r
es

id
ua

l o
f 

ne
t e

co
sy

st
em

pr
od

uc
tio

n 
(C

O
2 

µm
ol

 m
−2

 s
−1

)

P
ar

tia
l r

es
id

ua
l o

f 
ne

t e
co

sy
st

em
 

pr
od

uc
tio

n 
(C

O
2 

µm
ol

 m
−2

 s
−1

)
0.

00

0.
3

0.
2

0.
1

0.
0

−0
.2

0.
3

0.
2

0.
1

0.
0

−0
.2

Figure 4 Two examples of shifts in community trait distributions across gradients.
(A) Data from Cornwell and Ackerly (2009) showing shifts in the community mean
and intraspecific mean value of the trait distribution for specific leaf area or SLA. Dashed
lines represent least-squares fits for a given species and show the change in the pop-
ulation mean intraspecific variation across the gradient in soil water. Solid points and
the solid line show the least-squares regression for the arithmetic mean community
or interspecific value for SLA. Note: consistent with the assumption of a shift in an ‘opti-
mal phenotype’ across environmental gradients, intraspecific trait shifts are in the same
direction as the community or interspecific shift. (B) Data from our Colorado elevational
gradient showing the probability density distributions of SLA based on all individuals
in a 1.3�1.3 m plot at five sites along an elevational gradient. The number of individ-
uals at each site is 2468 m¼234, 2710 m¼639, 2815 m¼938, 3155 m¼282, and
3380 m¼160. Across the elevational gradient, the community trait distribution of all
individuals significantly shifts with changes in the mean community trait and variance.
In (C) and (D), for the Colorado plots, we assess how changes in the community-
weighted mean and variance of five plots within each site contributes to variation in
net ecosystem production of CO2 (NEP). These plots are partial residual plots showing
linearization of NEP relationships with the community-weighted values of mean SLA
and variance in SLA. As predicted by TDT, ecosystem carbon flux is positively related
to a shift in mean SLA but negatively related to an increase in community trait variance.
In contrast, variation in species diversity explains none of the variation NEP in this
system.
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provide one of the first studies to measure the functional traits of every single

individual within a given community (Fig. 4B). Few studies have fully docu-

mented the community trait distribution by measuring trait values from

every individual within the community. In this system, increasing elevation

is associated with a decrease in temperature and increase in precipitation, and

these changes drive the observed increase in SLA with elevation (Sides et al.,

2014). With increasing elevation, leaves have less structural durability, and

lower life spans due to a shorter growing season but have higher photosyn-

thetic rates (B.J. Enquist et al., unpublished data). According to TDT, the

elevational trend in the SLA distribution is due to a shift in the optimum

trait value based on temperature and water availability. This shift should also

correspond with a shift in ecosystem functioning. Further, any change in the

variance of the distribution will also have impacts on ecosystem functioning

and the ability of the site to respond to future shifts in the environment.

Assessing shifts in inter- and intraspecific trait variation allows us to assess

two central assumptions of TDT. First, trait distributions show directional

shifts across gradients. According to Eq. (10), for a given E, those individuals

with phenotypes that are closer to the mean community value should have,

on average, the highest growth rates. Previous studies along this same gra-

dient and study site have documented a rapid turnover of species with ele-

vation (Bryant et al., 2008). Figure 4B indicates that the strong species

diversity gradient is also reflected by a shift in traits. Note the range of trait

variation is approximately 2–3 orders of magnitude. This range of trait values

observed within communities in our gradient is approximately half of the

fraction of the variation observed in SLA across the globe in all plants

(Reich et al., 1997). So, across the span of �25 km distance between their

study sites, we observe a significant fraction of the trait variation that is

observed within species across the globe. As more studies document shifts

in SLA across strong environmental gradients (such as elevation, flooding,

soil water availability, disturbance), it is becoming clear that the magnitude

of change can be nearly as large the global variation in the trait (Elser et al.,

2010; Violle et al., 2012). These results suggest that more local studies of

community trait distributions are reasonable proxies or natural laboratories

for scaling up trait-based ecology across large global climate gradients as well

as to predict future climate change scenarios.

Second, analyses from Sides et al. (2014) and Cornwell and Ackerly

(2009) also provide a key assessment to a core assumption of TDT.

According to TDT, for a given environment, E, if there is a mean optimal

phenotype that maximizes growth rate given an environmental trade-off
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(Fig. 2), then external filters and/or selection/plasticity will then promote

convergence of traits around this local optimal phenotype (Norberg et al.,

2001; see also Violle et al., 2012). Both of these studies show that patterns

of intraspecific mean trait shifts across an environmental gradient are in the

same direction as the interspecific community shift across the gradient (see

Fig. 4A). This is consistent with the expectation that either selection and/or

phenotypic plasticity has resulted in individuals that adjust their phenotypes

to better match an optimal phenotype within each community.

7.3 Shifts of Assemblage Trait Distributions Across Broad
Environmental Gradients

Across broad-scale geographic gradients, recent geographic trait mapping

analyses from Swenson et al. (2012) and Šı́mová et al. (2014) show that

the mean assemblage trait value of many plant functional traits varies

directionally across biogeographic scales. Geographic variation in the mean

tree assemblage SLA as well as tree size (height, a proxy for plant mass, m)

shows significant shifts in both traits across gradients at the biogeographic

scale (Fig. 5). As is assumed in TDT, across a given environmental gradient,

E, the mean community value, C(z) or C(b0), will shift. Indeed, across

North America, Šı́mová et al. find that the mean assemblage SLA is posi-

tively correlated with annual precipitation (r2¼0.539) but negatively related

to annual temperature seasonality (r2¼�0.440) (see Table 2 in Šı́mová

et al., 2014).

7.4 Building Better Models for Variation in Ecosystem Function
via the Shape of Trait Distributions and MST

At the local scale, measures of trait distributions associated with our theory in

principle can be used to scale up to ecosystem function as well as to predict

potential future community responses to climate change. Focusing on a key

trait, SLA, and the total community biomass,CTot, we fit a simplified version

of the TDT scaling model NEP∝ CWMSLAh i � CWVSLAh i �Cb
Tot, where

NEP is the Net Ecosystem Production (μmol CO2 m�2 s�1). To focus

on just the effects of SLA and CTot on NEP, we allowed each sample site

along the gradient to be a random factor in the model. Here, b is the fitted

exponent. Here, the values hCWMSLAi and hCWVSLAi are the community

abundance-weighted mean and variance in SLA, respectively, based on log

transformed trait values. The fitted model explains�71% of the variation in

NEP (df¼22, F¼11.04, p<0.0001, AIC¼�24.39). In support of TDT,
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both increases in hCWVSLAi and CTot each increase community NEP

(p¼0.023, t¼0.337; and p¼0.058, t¼2.332 respectively) while increases

in hCWVSLAi tends to decreaseNEP (p¼0.068) (see Fig. 4). The fitted expo-

nent for b is different than the predicted value of 3/5 (b¼0.13 +/� 0.14) but

the range of variation in plot biomass,CTot in this study is generally less than

an order of magnitude. In contrast, variation in species diversity explains
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Figure 5 Correlations between annual net primary productivity (NPP) and (A) species
diversity per plot; (B) the plot community biomass-weighted mean, CWM, of the SLA
distribution; and (C) the plot community biomass-weighted variance, CWV, of the
SLA distribution for the four selected plots from the Park Grass experiment. Each dot
represents the annual aboveground biomass production of a given plot in a given year.
Compare these relationships to the predictions with Trait Driver Theory and Biodiversity
and Ecosystem Functioning Theory (Table 3). Note that there is a negative correlation
between NPP and diversity, while the opposite is predicted by classical Biodiversity–
Ecosystem Functioning theory. However, in accordance with TDT, there is a negative
relationship between the variance of the abundance-weighted community trait distri-
bution and a positive relationship between mean-weighted trait and NPP. These results
show a direct linkage between a critical trait that influences plant growth, forces that
influence the shape of the trait distribution, and how both changes in trait mean
and variance then shape ecosystem functioning.
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none of the variation in NEP in this system either as a single predictor

(r2¼0.029, p¼0.3617). Allowing each sample site along the gradient to

be a random factor in the model shows that species nichness has a negative

effect on NEP in the model (t¼0.01, p¼0.03). Additional analyses under-

score the importance of both hCWMSLAi and hCWVSLAi on influencing

variation NEP across this elevational gradient (see Appendix). Together,

these results support several key predictions of TDT—the shift in the mean

of C(b0) is closely tied to environmental drivers and that shifts in the mean

and variance ofC(b0) are a primary driver of variation in community carbon

flux (Fig. 4C and D).

Across broad climatic gradients, recently Michaletz et al. (2014) utilized

MST to predict variation in annual net primary productivity (NPP, grams of

biomass per area per year). In support of MST, rates of growing season NPP

scaled with total autotrophic biomass indistinguishable from the allo-

metrically ideal value of 3/5 predicted value in Eq. (12). Their analysis sup-

port another prediction of TDT that controlling for scaled effects of total

biomass, CTot, and stand age on NPP shows that shifts in <b0>, primarily

because of shifts in hSLAi, will also shift variation in NPP (Fig. 7).

At larger biogeographic scales, assemblage trait maps such as Fig. 5 could

then be used to predict ecosystem functioning. At these larger geographic

scales, if the distribution of SLA still reasonably approximates rates of bio-

mass production, then, according to TDT, regions with high mean SLA

and low variance should have the highest rates of instantaneous net primary

production. In general, recent compilation of geographic variation in instan-

taneous rates of terrestrial ecosystem NPP from remotely sensed data indi-

cates that areas with the highest instantaneous rates of NPP do generally

correspond2 to assemblages with high mean and low variance in SLA. How-

ever, according to Eq. (16), one should also control for total system biomass

(which correlates with variation in tree height) as well as variation in the

other traits that also can influence NPP. Nonetheless, the correspondence

between biogeographic variation traits and predictions fromTDT is a prom-

ising future direction.

7.5 Temporal Trait Shifts Across Fertilization Gradients
The results from the long-term dynamics and fertilization experiment from

Rothamsted are given in Tables 2 and 3 as well as in Figs. 6 and A3–A5.

Within the Rothamsted dataset, all of the traits studied, the biomass-

2 http://daac.ornl.gov/NPP/npp_home.shtml#.
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weighted distribution of the trait SLA was associated with the most

prominent shifts in the central moments of communities in response to fer-

tilization (Fig. A1; Table 2; see also Appendix). For both fertilized and con-

trol plots, all four moments of the community SLA distribution changed

significantly. The overall effect of fertilization on the community trait

Table 2 Observed Temporal Changes in the Central Moments of the Community Trait
Distribution C(z) in the Park Grass Experiment (see Figures A3–5 in Appendix)

Moment of Community
Trait Biomass Distribution,
C(z)

Control
(Unfertilized) Fertilized

Corresponding TDT
Predictions in
Table 1

SLA Mean (CWM) 0.65*** (�) 0.40**
(+)

See I(a) and I(b)

Variance (CWV) 0.48** (+) 0.26*
(�)

See II(a)–(e)

Skewness (CWS) 0.13ns. 0.29*
(�)

See III(a)–(b)

Kurtosis (CWK) 0.69*** (�) 0.10ns. See IV(a)–(b)

Height Mean (CWM) 0.61** (�) 0.04ns. See I(a) and I(b)

Variance (CWV) 0.27* (�) 0.51**
(+)

See II(a)–(e)

Skewness (CWS) 0.17ns. 0.02ns. See III(a)–(b)

Kurtosis (CWK) 0.38** (+) 0.20ns. See IV(a)–(b)

Seed

mass

Mean (CWM) 0.21ns. 0.01ns. See I(a) and I(b)

Variance (CWV) 0.38** (�) 0.01ns. See II(a)–(e)

Skewness (CWS) 0.56** (�) 0.00ns. See III(a)–(b)

Kurtosis (CWK) 0.31* (�) 0.01ns. See IV(a)–(b)

Predictions from Trait Driver Theory correspond to the cells indicated in Table 1. As an estimate of
the central moments of C(z), we estimated the community-weighted values for the mean, variance,
skewness, and kurtosis (CWM, CWV, CWS, and CWK, respectively). Values are the Pearson prod-
uct–moment correlations, r, between time since the start of the experiment and the corresponding trait
distributionmoment for the three main traits investigated, specific leaf area or SLA, adult height, and seed
size. In accordance with TDT, for the trait SLA, the distributions of the fertilized and unfertilized plots
have diverged for all trait moments. Further, in accordance with TDT, increasing fertilization leads to an
increasing skew of the SLA distribution, but not for seed size and reproductive height, traits that do not
directly underlie the growth equation, indicating that fertilization is a strong environmental driver that
influences plant growth. Correlations are for both unfertilized: plot 2 and fertilized: plot 16. *p<0.05;
**p<0.01; ***p<0.001; ns., not significant; (�), negative relationship; (+), positive relationship.
Observed shifts in the central moments of SLA are generally in accordance to predictions from TDT
(see Table 1 and text for details).
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distribution is consistent with fertilization differentially favouring certain

phenotypes (Chapin and Shaver, 1985; Suding et al., 2005; Tilman,

1982) and a replacement of slower growing species with faster growing spe-

cies (Chapin, 1980; Grime and Hunt, 1975; Knops and Reinhart, 2000).

Similar to past findings, across all plots, the community mean SLA increased

(see Craine et al., 2001; Knops and Reinhart, 2000) and the variance

Table 3 Correlations Between Trait Moments and Annual Net Primary Productivity for
the Park Grass experiment

Central Moment of
Community Trait
Distribution

Observed
Correlations

Predicted
Response–Trait
Driver Theory

Predicted Response–
Biodiversity Theory

SLA Mean (CWM) 0.71*** (+) + NP

Variance (CWV) 0.45*** (�) � +

Skewness (CWS) 0.28*** (+) NP NP

Kurtosis (CWK) 0.19*** (+) + �
Also listed are the predicted signs of the correlationsmade fromTrait Driver Theory (see text and Table 1)
and from Biodiversity–Ecosystem Functioning theory (assuming the theory of Tilman et al., 1997 where
variability in trait SLA is a good proxy for variation in species richness via niche or trait space).Note: both
theories make opposite predictions for the signs of the correlations. NP, no specific prediction is made as
such predictions would depend upon specifics of system. As an estimate of the central moments of C(z),
we estimated the community biomass-weighted values for the mean, variance, skewness, and kurtosis
(CWM, CWV, CWS, and CWK, respectively).
***p<0.001.
(�), Negative relationship; (+), positive relationship.
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Figure 6 In support of Trait Driver Theory, woody plant net primary production scales
with total assemblage biomass (see Eqn. 12). Further, for a given amount of biomass,
NPP will be modified by shifts in the mean community leaf trait, specific leaf area or
SLA (see Eqn. 15). Figure modified from Michaletz et al. (2014).
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decreased. The directional community trait shift is reflected in increased

skewness values (differing from zero). Fertilization also led to a shift in

the kurtosis but only for SLA values. Specifically, SLA shifted from negative

kurtosis values to zero or positive kurtosis values, suggesting that fertilization

increased rates of competitive exclusion of suboptimal trait values leading to

a more peaked trait distribution. Intriguingly, the direction and rate of

change for fertilized versus control plots differed in sign and magnitude indi-

cating that the trait distributions of control and experimental plots steadily

diverged over time.

The PGE supports several predictions from TDT. First, TDT predicts

that a shift in an environmental driver (fertilization in this case) should pri-

marily be seen as a shift in traits associated with growth rate. Of all of the

traits assessed, SLA showed the strongest shifts over time (Table 1). The

other traits showed relatively little to no change over time. The dispropor-

tionate shift in SLA is consistent to expectations from TDT as SLA is the

only trait directly linked to the growth function, f(b0). Second, consistent

with a shifting in an optimal phenotype, the skewness of the fertilized plot

increased over time. Third, consistent with a productivity–trait variance

trade-off, the annual net primary productivity (NPP) was positively corre-

lated with community mean and kurtosis of the SLA distribution but neg-

atively correlated with variance in SLA (Fig. 6; Table 3). Lastly, shifts in the

trait distribution are more closely tied to NPP than species richness (see

Table 3). We observe a weak to negative correlation between species rich-

ness and NPP (Fig. 6A; Table A1). Together, our approach provides: (i) a

more mechanistic understanding of the long-term response of the species

and communities found within the PGE experiment and (ii) an alternative

trait-based approach that can in principle be integrated with past ‘species

richness based’ theories invoked to explain the decrease species richness with

fertilization (Tilman, 1982).

8. DISCUSSION

We have shown that TDT can formalize numerous assumptions and

approaches in trait-based ecology. We provide examples of how this can be

done for several different biodiversity hypotheses in terms of the dispersion

of traits (Tables 1 and 3). We further argue that ecological theories need to

move beyond species richness and be recast in terms of organismal perfor-

mance via functional traits. As a result, TDT offers an alternative framework

to the standard taxonomic approach for linking biodiversity and ecosystem
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functioning, where primacy has been placed on the importance of species

richness. TDT instead focuses on the importance of ‘trait diversity’ via

the shape of the trait distribution of individuals and shared performance cur-

rencies (e.g. growth). Because TDT incorporates intraspecific variation, it

necessarily includes natural selection as a process that shapes the trait distri-

bution. By incorporating interspecific trait variation, it also includes ‘selec-

tive’ processes at higher levels of organization within the community, such as

species sorting (see also Shipley, 2010). We show that using TDT to analyze

these processes leads to several predictions opposite to predictions made by

Biodiversity–Ecosystem Function theory (Naeem and Wright, 2003;

Tilman et al., 1997; see also Table 3); it also offers a useful alternative

hypothesis by which to assess the linkage between ‘diversity’ (whether mea-

sured by species richness or via the trait distribution) and ecosystem

functioning.

TDT also offers a predictive framework for management. Increasingly,

trait-based approaches to management have shown that a focus on trait shifts

due to land use, as well as management and agricultural practice, can yield

deeper insight into the processes of concern tomanagers (Garnier andNavas,

2012). For example, biomass production, the timings of peak production

and plant digestibility, and response time to disturbance can be predicted

from the shape of the community trait distribution as well as many of the

plant traits underlying our general growth equation (see studies and refer-

ences listed in Garnier and Navas, 2012). It is intriguing to note that

TDT predicts a trade-off between short-term productivity and long-term

response to the environment. Agriculture focused on maximizing short-

term productivity reduces trait variance by planting genetically homoge-

neous monocultures.

Our analyses find that none of the central moments of the trait distribu-

tion in the Park Grass dataset are correlated with species richness (see

Table A1 in the Appendix). Indeed, species richness does not appear to

be a reliable proxy for how the diversity of phenotypes and trait distributions

respond to environmental change. Further, across large biogeographic gra-

dients, recent studies have found the trait variance and the total functional

trait space is often unrelated to species richness (Lamanna et al., 2014; Safi

et al., 2011; Šı́mová et al., 2014; Fig. 7). The potential for improved predic-

tions using trait and size distributions that can be linked to metabolic scaling

fundamentally comes down to the increase in information contained in traits

that is not necessarily present in a species-richness-based approach (Tilman

et al., 1997) or even a phylogenetic approach to community ecology
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(Cavender-Bares et al., 2009). Although TDT is based on simplifying

assumptions, it helps to better connect and scale trait-based ecology and

MST with large-scale ecology and biogeography. It integrates and builds

upon prior work that developed highly mechanistic trait-based models

(Norberg et al., 2001; Zhang et al., 2013) and other work that predicted

how individual growth rates change across scale with size and temperature

(Enquist et al., 2007a). TDT thus enables ecological theories to be ‘scaled up’

to predict and test the consequences of how organismal response to climate

change will ramify at the community and ecosystem levels across both local-

and large-scale gradients in geography (space) and fluctuations in time (cli-

mate change).

It is becoming clear that multiple assembly processes—abiotic filtering,

biological enemies, competition, facilitation, below-ground competition—

likely operate simultaneously and at differing scales to structure communities

and larger scale species assemblages (Cavender-Bares et al., 2009; Grime,

Mean assemblage trait value
Trait value 

Standardized effect size

Plant size (height)
3.00 4.94

–3.670.28

21.78 4.12

–4.455.09

Specific leaf area

Figure 7 Biogeographic variation in the (A) mean species assemblage functional trait
specific leaf area (SLA, m2 g�1) and plant height (m) and (B) the standardized effect size
(SES) of the mean trait values across woody plant communities across North America.
The SES measures is the observed value is significantly higher or lower than expected
given the species richness. Thus, high SES values indicate greater mean trait values than
expected from the observed number of species and low SES values indicate lower mean
values than expected. The mean SLA is lowest in the low elevation-latitude tropical for-
ests and tends to be highest in temperate forest and grassland regions. Across broad
geographic gradients, both the mean and the variance significantly vary. According
to Trait Driver Theory, areas that correspond to high mean SLA and larger standing
stocks of biomass (corresponding to taller mean heights) should have the highest rates
of instantaneous net primary production, NPP. However, NPP will also be modified by
the assemblage variance in SLA. Figure modified from Šímová et al. (2014).
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2006; Mayfield and Levine, 2010; Swenson and Enquist, 2009). The result is

that the distribution of some traits may be more over- or under-dispersed

than others. Future work should better link empirical data with theory to

test the community and ecosystem responses when multiple trait drivers

influence trait variance and when trait optima are strongly influenced by dif-

fering levels of ecological interactions (competition, predation, mutualism,

etc.).

Our work has primarily focused on the traits and environmental drivers

that underlie growth rate. Indeed, refining and extending TDT will also

require better identification of the above- and below-ground traits that

influence growth rate. Lastly, analysis of the shift in the mean and variance

of assemblage values of many plant functional traits as well as stand biomass

across biogeographic scales may provide the necessary basis to predict eco-

system functioning across large scales. Focusing on variation in SLA, TDT

predicts that the distribution of SLA will influence rates of biomass produc-

tion. Correcting for the effects of stand biomass (see Eq. 8), assemblages with

high mean SLA and low variance should have the highest rates of instanta-

neous net primary production. In general, recent compilation of geographic

variation in instantaneous rates of NPP from remotely sensed data indicates

that areas with the highest instantaneous rates of NPP generally do corre-

spond (Zhao and Running, 2010; Zhao et al., 2005) to assemblages with

high mean and low variance in SLA regions identified by Swenson et al.

(2012) and Šı́mová et al. (2014). TDT also predicts that while regions with

relatively lower trait variance will be more sensitive to rapid directional cli-

mate change, assemblages with greater variance, however, would be

expected to more closely track climate change. Future tests of TDT at

the scale of global ecology should more formally assess the predictions of

TDT at this scale by assessing the specific relationships between the trait dis-

tribution, vegetation biomass, and possible covariation of other traits.

The TDT prediction of an inverse relationship between trait variance

and production is not necessarily in conflict with either ‘positive species

complementarity’—niche partitioning allows species to capture more

resources in ways that are complementary in both space and time

(Tilman, 1999)—or ‘transgressive overyielding’ where species use resources

in ways that are complementary in space or time to stably coexist with one

another so that more diverse communities capture a greater fraction of avail-

able resources and produce more biomass than even their most productive

species (see Tilman et al., 1997). TDT needs to be reconciled with these

ideas because recent studies confirmed that within biodiversity experiments,
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‘positive species complementarity’ does enhance ecosystem productivity

(Cardinale et al., 2007). Given TDT, a natural question is how are trait dis-

tributions modified when complementarity effects are strong? Effects such as

complementarity can be incorporated into TDT growth functions as

explained in Savage et al. (2007).

In sum, we have argued that more powerful tests of biodiversity theories

need to move beyond species richness and explicitly focus on mechanisms

generating diversity via trait composition and diversity via the shape of trait

distributions. The rise of trait-based ecology has led to an increased focus on

the distribution and dynamics of traits across broad geographic and climatic

gradients and how these distributions influence ecosystem function. How-

ever, a trait-based ecology that is explicitly formulated to apply across different

scales (e.g. species that differ in size) and gradients (e.g. environmental tem-

peratures) has yet to be articulated.TheTDTpresentedhere is a formalization

of essential steps for mechanistically linking and scaling functional traits for

individuals with the dynamics of ecological communities and ecosystem

functioning. This TDT approach builds upon and complements existing

trait-based approaches in ecology (e.g. Grime, 1998; Kraft et al., 2008;

Lavorel and Garnier, 2002; Suding et al., 2008a). It is appealing because it

can connect individual physiology and traits with ecosystem dynamics and

how both respond to climate change (Suding et al., 2008b), geographic gra-

dients, and differing ecological processes (e.g. niche vs. neutral; see Weiher

et al., 2011). Given the increasing ability to remotely sense numerous traits

of terrestrial vegetation (Asner et al., 2014; Doughty et al., 2011) and the

increasing access to both plant and animal trait data (Kattge et al., 2011),

TDT and its elaborations are ripe for providing empirically grounded,mech-

anistic models of ecosystem dynamics from local to large scales.
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APPENDIX

A.1 Using TDT to Recast Ecological Hypotheses
A unique attribute of TDT is that several differing ecological theories can

now be recast in terms of how they influence the shape of trait frequency

distributions (C(z)). Each of these theories makes differing hypotheses that

influence the shape of trait distributions and the functioning of ecosystems:

(i) H1: Phenotype–environment matching: This hypothesis states that species

are more successful in different parts of the landscape because individ-

uals have different trait values across space that are better adapted to

local features of that space, such that the mean ‘phenotype’ matches

variation in the local environment (Westoby and Wright, 2006). This

distinction builds upon observations that stem back to Schimper (1898,

1903) that form the foundation for understanding changes in fitness

and functional traits and species composition across gradients

(Levins, 1968; Westoby and Wright, 2006). A prediction of this

hypothesis is that, either due to convergent evolution or abiotic filter-

ing of relevant traits, similar environments should be dominated by

species with similar trait values (see discussion in Karr and James,

1975; Mooney, 1977; Orians and Paine, 1983).

(ii) H2: The competitive-ability hierarchy hypothesis: This hypothesis states

that the strength of competition between individuals is driven by

the distance between individuals as measured according to their func-

tional traits (Freckleton and Watkinson, 2001). The competitive-

ability hierarchy hypothesis leads to opposite predictions than the

niche-based competition-trait similarity and competition-relatedness

hypotheses (see below; Mayfield and Levine, 2010). Here, the

resulting competitive hierarchy will cause a reduction in the trait var-

iance over time and increased functional clustering because individuals

that share a trait value will outcompete individuals with different trait

values (Freckleton and Watkinson, 2001; Kunstler et al., 2012;

Mayfield and Levine, 2010).

(iii) H3: Abiotic filtering: The importance of local abiotic forces is reflected

in the community trait range and variance. Abiotic filtering hypothesis

states that increasingly more stressful environments will limit the range

and variance influence. This hypothesis was formalized by Keddy and

colleagues (Keddy, 1992; Kraft and Ackerly, 2010;Weiher and Keddy,

1999). Similarly, on ecological time scales, due to phenotype–

287Scaling from Traits to Ecosystems



environment matching, increasingly more stressful environments, E,

will increasingly restrict the range of trait values that could co-occur

within a given environment. This ‘trait filtering hypothesis’ states that

the abiotic environment filters trait values so as to limit the variance

and range of the trait distribution. This hypothesis, which can be seen

as an ecological scale version of the ‘favourability’ hypothesis of

Terborgh (1973), predicts that more physiologically stressful environ-

ments (frost, high salinity, drought, etc.) should place especially rigid

filters on the types of phenotypes (i.e. traits) that can survive and

potentially co-occur (e.g. Kraft et al., 2008). Note, as discussed in

(ii) and (iii), the variance and range of a trait distribution C(z) are also

influenced by biotic forces. Similarly, repeated disturbance or environ-

mental variability may minimize local interactions and could also

increase community trait variance (Grime, 2006).

(iv) H4: Strength of local biotic forces is revealed via trait variance and kurtosis: Dif-

fering biotic community assembly hypotheses can differentially influ-

ence the spacing of trait values within the range of filtered

phenotypes. As stated in (ii), competition for a common limiting

resource would ultimately lead to competitive exclusion (e.g. see

Tilman, 1982) resulting in a convergence of ‘superior competitor’ phe-

notypes (Abrams and Chen, 2002; Mayfield and Levine, 2010; Savage

et al., 2007). This convergence would be reflected by decreasing vari-

ance and an increase in ‘peakedness’ of the trait distribution or an

increase in positive kurtosis (Navas and Violle, 2009). In contrast,

according to Chesson (2000), if traits map onto niche differences,

increased niche (trait) differentiation will lead to increasing coexistence

of individuals with differing traits. These classical niche partitioning

models predict that competition will limit functional (trait) similarity

(MacArthur and Levins, 1967) and thus increase in the spacing between

co-occurring phenotypes (see Diamond, 1975;MacArthur, 1958). Sim-

ilarly, biological enemies (Kraft andAckerly, 2010), facilitation (Brooker

et al., 2008), and frequent disturbance (Grime, 1998) can maintain trait

diversity (e.g. an over-dispersion of phenotypes). Niche packing models

result in either a broader or evenly dispersed trait distribution (high var-

iance) or even a multimodal trait (negative kurtosis) distribution.

(v) H5: Assessing neutral forces via the shape of local and regional trait distribu-

tions: An alternative hypothesis to (ii) and (iii) is that local communities

are primarily structured by stochastic dispersal, drift, and dispersal lim-

itation (Hubbell, 2001). Such a neutral scenario would predict on

average, for traits not associated with dispersal, little to no difference
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in the shape of the community trait distribution when sampled across

differing spatial scales. Further, for traits not associated with dispersal

ability, there should be no relationship between trait distribution

and changes in the environment.

A.2 Integrating Metabolic Scaling Theory into TDT
Within TDT, the total biomass associated with a trait, z, is denoted byC(z).

This notation avoids ever needing to account for individual mass, M, or

number of individuals with mass. In contrast, the growth equations Meta-

bolic Scaling Theory are phrased in terms of individual mass, M, where

organismal growth rate, dM/dt, is given by

dM

dt
¼ b0 zð ÞM3=4 (A1)

where b0(z) is a coefficient that depends on a single or set (meaning z is a

vector) of traits.

To integrate MST and TDT, we first recognize that, C(z), the biomass

associated with trait z can be expressed as C zð Þ¼ Ð dMC z,Mð Þ¼Ð
dMN z,Mð ÞM , where C(z,M) is the mass density of individuals with both

trait value z and individual mass M, while N(z,M) is the number density of

individuals that have both trait value z and individual massM. In this expres-

sion, we have integrated over all possible values of mass, M, so we have the

total biomass of all individuals with trait z. Furthermore, note that integrat-

ing this over all traits, z, gives the total biomass, CTot ¼
Ð
dzC zð Þ¼Ð

dz
Ð
dMN z,Mð ÞM . Consequently, we can multiply both sides of Eq. (A1)

byN(z,M), integrate both sides over
Ð
dz
Ð
dM ; and multiply and divide the

right side by CTot to obtain

ð
dz

ð
dMN z,Mð ÞdM

dt
¼

ð
dz

ð
dMN z,Mð Þb0 zð ÞM3=4

ð
dz

ð
dMN z,Mð ÞM

2
664

3
775CTot (A2)

At steady state,N(z,M) is not changing in time, so we can move it inside

of the derivative with respect to time, and we can also move the integrals

inside of the derivative because the integration over all possible traits and

masses is not a time-dependent object

d

ð
dz

ð
dMN z,Mð ÞM

� �
dt

¼ dCTot

dt
(A3)
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Furthermore, we can express the bracketed term on the right side of

Eq. (A1) as a mass average of a growth function as followsð
dz

ð
dMN z,Mð ÞM b0 zð ÞM�1=4

h i
ð
dz

ð
dMN z,Mð ÞM

2
664

3
775¼

ð
dz

ð
dMC z,Mð Þ b0 zð ÞM�1=4

h i
ð
dz

ð
dMC z,Mð ÞM

2
664

3
775

¼ b0 zð ÞM�1=4
D E

C

(A4)

where the C subscript denotes that the average is taken with respect to the

biomass. Combining all of this, we obtain the equation for the scaling of Net

Primary Productivity or NPP equation

dCTot

dt
¼ b0 zð ÞM�1=4
D E

C
CTot (A5)

This equation is in the most generic form of a TDT equation, and the

growth function f zð Þ¼ b0 zð ÞM�1=4 can be expanded such that the biomass

growth equation can be expressed in terms of the biomass-weighted central

moments of the trait z, such as the variance, skewness, and kurtosis.

We now consider a few special cases of Eq. (A5) to relate to the TDT

and scaling equations already in the literature. In the case that there is

only a single mass value,M*, or a very small range of mass values, the number

density becomes N z,Mð Þ¼N zð Þ@ M�M*ð Þ in terms of a Dirac-delta

function for the mass dependence. Therefore,
Ð
dz
Ð
dMN zð Þ@ M�M*ð Þ

M b0 zð ÞM�1=4
� �¼Ð dzN zð ÞM* b0 zð Þ M*ð Þ�1=4

h i
¼ M*ð Þ�1=4 Ð

dzC zð Þb0 zð Þ,
and Eq. (A4) becomes

M*ð Þ�1=4

ð
dzC zð Þb0 zð Þð

dzC zð Þ
¼ M*ð Þ�1=4

b0 zð Þh iC (A6)

so the scaling of NPP equation becomes

dCTot

dt
¼ M*ð Þ�1=4

b0 zð Þh iCCTot (A7)

The term (M*)�1/4 can be thought of as an overall normalization to the

growth function f(z) from TDT. As such, this result reveals that TDT, as
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originally formulated, essentially ignores individual mass. Thus, based on

Eq. (A1), growth functions within TDT should have a roughly (M*)�1/4

hidden with the normalization constant for their growth function.

Conversely, as a special case, we consider the function b0(z) to be a con-

stant b0 that occurs when z¼z*. In this case, N z,Mð Þ¼N Mð Þ@ z�z*ð Þ
and

Ð
dz
Ð
dMN Mð Þ@ z�z*ð ÞM b0 zð ÞM�1=4

� �¼ b0
Ð
dMN Mð ÞM1=4, and

Eq. (A4) becomes b0
Ð
dMN Mð ÞM3=4=CTot. Combining these terms gives

the scaling of NPP equation

dCTot

dt
¼
b0

ð
dMN Mð ÞM3=4

CTot

CTot¼ b0

ð
dMN Mð ÞM3=4 (A8)

Following the arguments in Enquist et al. (2009), we can substitute

N Mð Þ∝M�11=8 to obtainMb∝C
8=5
Tot where the subscript denotes that largest

mass in the group. Using these relationships

dCTot

dt
∝b0

ð
dMM�11=8M3=4∝b0

ð
dMM�5=8∝b0M

3=8
b ∝b0C

3=5
Tot (A9)

Defining a new constant b00 to denote the product of b0 with all of the

proportionality constants, the overall scaling of NPP equation becomes

dCTot

dt
¼ b00C

3=5
Tot (A10)

in accord with the Net Primary Productivity scaling equation derived by

Enquist et al. (2009).

As a final special case, we consider the trait z and the mass M to be

uncorrelated and the number density to be a separable function such that

N z,Mð Þ¼N Mð ÞN zð Þ. Therefore, using results from Eq. (A9) and the def-

inition of an average, Eq. (A4) can be expressed as

ð
dzN zð Þb0 zð Þð

dzN zð Þ

ð
dMN Mð ÞM3=4

ð
dMN Mð ÞM

¼ k b0 zð Þh iC�2=5
Tot (A11)

where k captures the proportionality constants in deriving Eq. (A5).

Substituting this into our overall growth equation (Eq. A5) yields
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dCTot

dt
¼ k b0 zð Þh iC3=5

Tot (A12)

where the average is now the standard abundance average and is not the

biomass-weighted average. This is the growth equation in the scaling form

for this special case. Alternatively, for this special case, we could express

Eq. (A4) as

ð
dzN zð Þb0 zð Þð

dzN zð Þ

ð
dMN Mð ÞM M�1=4

h i
ð
dMN Mð ÞM

¼ k b0 zð Þh i M�1=4
D E

C
(A13)

and the NPP scaling equation becomes

dCTot

dt
¼ k b0 zð Þh i M�1=4

D E
C
CTot (A14)

This equation is completely equivalent to Eq. (A13) but expresses the

growth function more in terms of the TDT framework such that the right

side appears to have an overall linear dependence in CTot, and as a result, we

have a mixture of types of averages, with the function b0(z) being abundance

averaged and the M�1/4 being biomass averaged.

The major results of this section are Eq. (A5), which is the most general

formulation of the growth equation because it does not rely on traits or mass

being constant or uncorrelated. In this form, the growth equation is like the

TDT formulation, but as the special cases below it reveal, hb0(z)M�1/4iC
may hide extra dependencies on CTot. Equation (A7) is the result when

the mass is constant and is expressed in the form of TDT equations such that

it is linear in CTot and reveals an overall M�1/4 for adjusting the growth

function across groups. Equation (A10) is the special case where the traits

are constant and reduces to the exact scaling equation given in Enquist

et al. (2009). Finally, when traits and mass are uncorrelated, Eqs. (A13) and

(A14) are two different but completely equivalent ways to express the

growth function. Equation (A13) is in the form of scaling equations by con-

solidating the mass average with the CTot dependence, while Eq. (A14) is in

the form of TDT equations by keeping two averages around, including one

that is an abundance average and one that is a biomass-weighted average.

For all of these equations and cases, the functions inside the averages can

be expended in terms of moments as done for TDT for biomass-weighted

averages or as done in 2004 for abundance-weighted averages.
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A.3 Growth Functions Across Environmental Gradients:
Incorporating Trade-Offs into TDT

Importantly, as discussed in the main text, Eq. (9) predicts an unbounded

growth response such that increasingly larger values of b0 always leads to

increased growth, which realistically cannot continue indefinitely. A key

assumption of TDT is that there is fundamental trade-off between a given

trait value and the performance of an organism across an environmental gra-

dient, E. The final step to integrate a general TDT that can link traits, organ-

ismal performance, and environmental gradients is to specify trade-offs

between underlying traits, growth, and metabolic scaling.

Within a given environment, E, an important question is what would

prevent the average metabolic normalization, <b0>, from becoming infi-

nitely big or small? In the case of growth rate, possible trade-offs likely

include the types of limiting resources individuals use or the environmental

conditions for optimal growth. So, individuals that allocate internal

resources to specific traits defined by b0 may reduce the impact of one lim-

iting environmental factor, but this would necessarily incur a disadvantage

with respect to another environmental limiting factor.

A trade-off or cost function can be formulated within the growth func-

tion, f. Multiplying this cost function by f shows that, for a given E, the

growth function has a maximum at zopt or here b0opt , and as a result, the sec-

ond derivative of f (the second term in Eqs. A5 and A14) will be negative, as

long as <b0> is close to b0opt .

We can specify a generic form of a trade-off by following Norberg et al.

(2001). We can approximate a trade-off by first invoking a general quadratic

or Gaussian cost function on the community value (< b0>�b0opt ). We add a

cost function to Eqs. (A5) and (A14). This provides a general form of a trade-

off. That new cost function that is multiplied by f could be a general qua-

dratic 1� <b0>�b0opt
σ2

� �2� �
or Gaussian function, exp � <b0>�b0opt

σ2

� �2� �
. Here,

σ2is the observed standard deviation in the trait or b0 observed within the

assemblage. Both cost functions reduce to 1 when < b0>�b0opt (e.g. for a

given environmentE, the observedmean community trait, zopt, and average

metabolic normalization, < b0>, are at the local optimum). Note both

decrease in value as you go away from b0� b0opt . Dividing through by σ2

defines the penalty for individual growth rate for being away from the opti-

mum. Thus, for a given environment, E, characterized by a unique b0opt , the

growth function can be made more explicit in terms of a generic trade-off

where
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f b0ð Þ¼ c0b0 Mθ�1 b0ð Þ
 �
1� b0� b0,opt
� �

σ2b0

2
 !

(A15)

This is a modified growth function and is characterized in Fig. 2. It can be

made more specific by incorporating the traits that then define b0. Here, the

first term is the general growth equation from the relative growth rate lit-

erature (Poorter, 1989) that has been more formally derived in metabolic

scaling theory. The second term of Eq. (A1) is the associated trade-off. As

a result, the second term in the TDT Eq. (5) in the main text gives how

much of whole-community biomass production is reduced due to the amount

of trait variance,V, in the community because of the explicit trade-off func-

tion, the second derivative of f,
d2fb0¼<b0>

db2
0

, would then be negative near b0opt . As

a result, increasing variance in b0 would then decrease total community

production.

A.4 Methods: Approximating the Shape of the Community
Trait Distribution via Community-Weighted Measures

In order to assess predictions of TDT, it is necessary to quantify the full dis-

tribution of traits in a community, C(zi). This involves measuring the trait

values of all individuals and thus incorporates both inter- and intraspecific

trait variability. While measuring traits of all individuals in a community

is ideal and several studies have done so (Albert et al., 2010; Gaucherand

and Lavorel, 2007; Lavorel et al., 2008), it is a time-consuming work

(Baraloto et al., 2010). While there are limitations, the trait biomass distri-

bution, C(zi), can be approximated, and predictions of TDT can be tested

without explicitly measuring the traits of all individuals.

Trait distributions can be approximated in two ways. The first method is

straightforward and calculates the weighted trait distribution by taking the

mean species trait value and multiplying by a measure of dominance (cover,

biomass, abundance; Grime, 1998). This method can be implemented by

calculating the central moments of joint distribution.

This community-weighted variance or CWM is increasingly a standard

metric in trait-based ecology (Garnier and Navas, 2012; Lavorel, 2013;

Violle et al., 2007) and represents the trait mean calculated for all species

in a community weighted by species abundances as follows:

CWMj,y¼
Xnj
k¼1

Ak, j � zk (A16)
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where nj is the number of species sampled in plot j, Ak,j is the relative abun-

dance of species k in plot j, and zk is the mean value of species k. Several

studies have also assessed the community-weighted variance of the trait dis-

tribution (see Lavorel et al., 2011; Ricotta and Moretti, 2011).

The assemblage variance, V, calculated via the biomass-weighted values

for the community-weighted variance (CWVj,y) is given by

CWVj,y ¼
Xnj
k¼1

Ak, j � zk�CWMj,y

� �2
(A17)

Further, the central moments skewness and kurtosis (CWSj,y and

CWKj,y, respectively) are given by

CWSj,y¼
Xnj

k¼1
Ak, j � zk�CWMj,y

� �3
CWV

3=2
j,y

;

CWKj,y¼
Xnj

k¼1
Ak, j � zk�CWMj,y

� �4
CWV2

j,y

�3 (A18)

A limitation of this approach, however, is that it ignores the contribution

of intraspecific trait variability. Community trait moments may also be sen-

sitive to the distribution of abundances across species. For example, a highly

positive community kurtosis value may just reflect the hyper-dominance of

one species and not the true dispersion of traits again due to intraspecific

variation.

A second method utilizes subsampling individuals to obtain a better

approximation of how intraspecific variation influences the community dis-

tribution. By subsampling individuals for each species, one can begin to

incorporate intraspecific variation around mean trait values for each species.

In Fig. A5, we highlight a typical example that we believe can be used to

generate two approximations of the community trait distribution. We use

data from Konza Prairie LTER, Kansas, USA (McAllister et al., 1998). First,

data were collected for the abundance of each species. These data are illus-

trated in Fig. A4 to estimate the community trait distribution frommean and

variance measure of species traits. We find that, consequently and counter-

intuitively, the inclusion of intraspecific variation will likely simplify model-

ling efforts because these types of distributions are much easier to manipulate

and understand analytically. For each species, the standard deviation of trait

variation is equal to the reported standard error multiplied by the square root

(where n¼3). In sum, the community trait distribution can be
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approximated in two ways (methods B and C). While B emphasizes inter-

specific variation, C also begins to include intraspecific variation. Method

B is a reasonable approximation and can easily be implemented by most eco-

logical studies as it only requires interspecific trait information and local

abundance values. Method C requires an additional standardized

subsampling method to estimate the standard error for each species but will

result in a more accurate moment approximation.

A.5 Methods: Rocky Mountain Biological Lab: Shifts in Trait
Distributions and Ecosystem Measures Across an
Elevational Gradient

A.5.1 Measuring Whole-Community Trait Distributions
We measured community trait distributions and whole-ecosystem carbon

flux data along an elevational gradient near Gothic, Colorado. The elevation

gradient ranged between 2460 and 3380 m and spans 39 km in geographic

distance. The elevational gradient contains five long-term study sites that

run from dry, shrub-dominated high desert in Almont Colorado

(2475 m) through the subalpine zone, to just below tree line (3380 m).

The gradient consists of five long-term study sites that were established

by Enquist in 2003 and has been sampled every year since. The gradient

is located within Washington Gulch and East River valleys near the Rocky

Mountain Biological Lab.

Each study site along the elevation gradient has similar local slope, aspect,

and vegetation physiognomy. The sample area is approximately 50 m2 and

consists of a mixture of shrubs, grasses, and forbs. As discussed in Bryant et al.

(2008), there is substantial turnover of plant species between sites with very

few of the 120 species sampled, occurring in more than two of the sites.

Additionally, shrub cover across the gradient decreases from a high of

33% at the lowest elevation site to 0% at the highest.

We utilized carbon flux data collected during the summer months of

2010 measured across the gradient. A species list and phylogeny for species

at each site are given by Bryant et al. (2008). All sites contain weather stations

on-site or nearby. Each study site has a similar local slope and south–

southwest aspect and contains a mixture of herbaceous perennials, grasses,

and shrubs. Since 2003, each year, five 1.3�1.3 m plots have been

established haphazardly along the local slope of each study site, with at least

5 m distance between plots.

In 2010, Henderson measured the SLA of each plot and collected one

fully expanded leaf from every individual. Fresh leaf samples were scanned
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(with petiole) in the laboratory, then dried to a constant mass, and weighed.

The trait values measured from every individual in each community were

compiled to create individual-level trait distributions for SLA. In total, leaves

from 2253 individuals across 54 species were collected and measured at the

five sites. Species turnover was high, with only 11 species being found at

more than one site and only one species found at more than two sites.

A.5.2 Gas Exchange and Productivity Measures
In 25 plots (5 plots per elevational site), we measured total ecosystem carbon

flux. Carbon flux was measured as instantaneous daytime peak uptake (ca.

10 am) and night-time peak respiration (ca. 10 pm) (Saleska et al., 1999).

Ambient CO2 was measured by a Li-Cor 7500 infra red gas analyzer for

30 s and then the tent was put in place over the plot and the CO2 concen-

tration within the tent was measured for 90 s ( Jasoni et al., 2005). Daytime

measurements were only taken under cloudless conditions. The tent was

designed to let in 75% of photosynthetically active radiation (tent fabric

by Shelter Systems). Air inside the tent is well mixed by fans, and the tent

chamber was sealed using a long skirt along the base of the tent that was cov-

ered with a heavy chain. The volume of the tent used along the gradient was

2.197 m3.

Soil efflux was measured at the same time as NEP using a Li-Cor 6400

portable photosynthesis machine with the soil chamber. The soil chamber

fits inside a PVC soil collar, which was placed in the plot at least 2 weeks

prior to the first measurement. Soil efflux was measured in two places in each

plot along the gradient and one place per plot for the manipulation.

Carbon flux measurements along the elevational gradient were taken

4 weeks after snowmelt and then again at peak season (approximately

4 weeks after the first measurement, or when the majority of plants reached

maximum height). Each NEP measurement consisted of daytime peak

uptake (at �10 am) and night-time respiration (at �10 pm). Following

the method of Jasoni et al. (2005), ambient CO2 was measured for 30 s

and then the tent was lowered and the CO2 concentration within the tent

was measured for 90 s, under clear sky and low wind conditions. Air inside

the tent was well mixed by fans, and the chamber was sealed to the ground

using a heavy chain.

For data analysis, we fit the predicted TDTmodel, using multiple regres-

sion in R using the ‘car’ library we fit the following linear model

lm(log10(NEP) � CWM.SLA + CWV.SLA + log10(Bio) + as.factor(Site))

297Scaling from Traits to Ecosystems



where CWM.SLA is the community-weighted mean SLA and CWV.SLA

is the community-weighted variance SLA calculated using the above equa-

tions for CWM and CWV as presented in the vegan package in R. Here, all

values of SLA were log transformed before analyses, and log10(Bio) is the

log10 total above ground dry biomass at the time of carbon flux measure-

ment. We use the site elevation of the sample as a factor in the model.

The fit of this model explained a large fraction, �78%, of the variation in

NEP (R2¼0.778, df¼22, F¼11.04, p<0.0001, AIC¼�24.38). To eval-

uate potential collinearity problems that may arise from linear relationships

between model covariates (Ryan, 1997) we calculated variance-inflation

factors (VIFs) for each covariate in each model using vif() from the package

car in R. All VIFs were generally less than 5 except for one site where the

vif¼5.86 which is nonetheless still low. In this model, the effect of

CWV.SLA is significant (p¼0.023, t¼2.45, SE¼0.072, para-

meter¼0.337), but CWV.SLA and total biomass are marginally significant

(p¼0.068, t¼�1.921, SE¼0.067, parameter¼�0.138; p¼0.059,

t¼1.994, SE¼0.067, parameter¼0.135).

Variation in NEP across the gradient appears to be primarily due to the

CWM and CWV of community SLA. Removing the parameter biomass

and fitting a more simplified model with only mean and variance in SLA.

lm(log10(NEP) CWM.SLA + CWV.SLA + as.factor(Site))

predicts a similar amount of variation in NEP to the full model above

(p<0.0001, Adjusted R2¼0.67, AIC¼�21.40 and both CWM.SLA

and CWV.SLA are now significant within the model (p¼0.035,

t¼2.247, SE¼0.358, parameter¼0.803; p¼0.0386, t¼�2.194,

SE¼0.075, parameter¼�0.165)).

Fitting a more simple model just using either plot biomass or plot

CWM.SLA with site as a factor results in a poorer fit model when compared

with the TDT-predicted model with lower R2 and higher AIC values

((log10(posNEP)� log10Bio+as.factor(Site_name, R2¼0.687, AIC¼
17.994; lm(log10(NEP)�CWM.SLA+as.factor(Site)); R2¼0.684,

AIC¼�17.704). Further, in both models, the effect of biomass and

CWM.SLA was marginally significant (p¼0.064 and p¼0.056, respec-

tively). These results indicate that together the CWM and CWV of com-

munity SLA are primary drivers of variation in community carbon flux.

A.6 Methods: PGE: Background, Methods, and Discussion
A.6.1 Background and Methods
The original purpose of PGE, started in 1856, was to investigate the effects of

high levels of inorganic fertilizers and organic manure on hay production
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relative to control treatments (see references within Crawley et al., 2005 for

additional details on methodology). Our analyses mainly focused on the

PGE trait dynamics of Plots 2 and 16. These plots were selected because

of their contrasting botanical composition and species richness (Crawley

et al., 2005; Harpole and Tilman, 2007). Plot 2 (became plot 2/2 in

1996) received farm yard manure between 1856 and 1863, but since then

has received no further manure or fertilizer inputs, and is now considered

to be a control plot. Plot 16, started in 1858, is a fertilized, unlimed plot that

receives annual N, P, K, Na, and Mg applications (48 kg N ha�1 as sodium

nitrate in spring; mineral applied in winter: 35 kg P ha�1 P as triple super-

phosphate, 225 kg K ha�1 as potassium sulphate, 15 kg Na ha�1 as sodium

sulphate, and 10 kg Mg ha�1 as magnesium sulphate). For the Park Grass

dataset, we approximated the central moments of the community trait dis-

tribution,C(z), for trait zwithin plot j and year y using Eqs. (A9)–(A11).We

analyzed the time series of these plots in terms of changes in botanical com-

position, traits, and species richness. To focus on how experimentally paired

local communities have responded over time, we highlighted plots 2 and

16 (the other plots also showed similar responses).

A.6.2 Assignment of Trait Values and Biomass-Weighted Trait
Distributions

We assessed changes in SLA, seed size, and height. These traits have also

been proposed to capture most functional and life history variation across

species (Westoby, 1998; Westoby et al., 2002). Seed size is thought to char-

acterize regenerative traits not associated with our trait-based growth model

developed in Eq. (A7). Including a regeneration trait provides a basis to assess

if other niche- or dispersal-based processes acting on other traits may be

more important in structuring the community than traits associated with

growth, dC/dt (see also discussion on effect and response traits; Suding

et al., 2008). Further, variation in seed size should not directly influence

our ecosystem-level predictions for dCTot/dt as this trait is not explicit in

Eq. (A7). According to Eq. (A7), plant height (or size,C) can influence eco-

system NPP. So any large shifts in mean plant height would be important to

note as well. Trait values are for populations sampled in United Kingdom.

We used the first four central moments of C(z) for plot j and year y to cal-

culate the biomass-weighted mean, variance, skewness, and kurtosis.

Within this experiment, species abundance was measured by cutting

aboveground biomass to ground level from six randomly located quadrats

(50�25 cm) within each experimental and control plot. The plant material

was then sorted into species, oven dried at 80 °C for 24 h, and the dry matter
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determined (Crawley et al., 2005; Williams, 1978). For each plot, yields

were estimated by weighing standing biomass (t/ha at 100% dry matter)

from the whole plot, harvested in mid-June. The plots were originally

cut by scythe, then by horse-drawn, and then tractor-drawn mowers

(Williams, 1978; see these references for additional methodological detail

of the PGE; Crawley et al., 2005).

Our analysis of additional fertilization and control plots at Park Grass

(plots 3 and 14) also reveal similar differences in trait distributions (mean,

variance, skew, and kurtosis) between the control and fertilized plots. In

sum, for all of the Park Grass plots, our central conclusions do not change.

We observed coordinated shifts in the functional trait distribution. In

Table A1, we show the correlations between the central moments of the trait

distribution and species richness. These correlations include plots 2 (control)

and 16 (fertilized) together. None of the central moments have significant

correlation with species richness, indicating that the mechanisms and

responses to environmental change captured by the shape of trait distribu-

tions are not captured by species richness. Figure A1 shows the change in the

central moments of the community trait distribution for SLA. Figure A4

shows the associated changes in seed size in the 140-year long-term PGE.

Figure A5 shows the change in the central moments of the community trait

distribution for adult height in the 140-year long-term PGE.

A.6.3 PGE—Additional Discussion
Fertilization also changed the shape of the SLA trait distribution indicating

that the underlying forces that structure these communities under differing

environments changed. For example, fertilization led to a reduction in the

variance (the community mean SLA was negatively related to the

Table A1 Correlations Between the Central Moments of the Community Trait
Distribution of Specific Leaf Area or SLA and Species Richness (Plots 2 (Control) and
16 (Fertilized) Together)

Species Richness

SLA Mean 0.00ns.

Variance 0.05ns.

Skewness 0.08ns.

Kurtosis 0.03ns.

None of the moments have significant correlation with species richness, indicating that the mechanisms
and responses to environmental change captured by the moments are not captured by species richness.
This represents one of the great advantages for Trait Driver Theory (TDT) over theories based on species
richness.
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community SLA variance, r2¼0.48, p<0.001), suggesting either that fertil-

ization was an environmental ‘filter’ on traits and/or competitive exclusion

increased (see Table 2). The observed increase in the skewness and kurtosis

of the SLA distribution with fertilization is in accord with predictions and

expectations of TDT where more quick directional shifts in zopt will lead

to a skewed distribution. In contrast, the control plot trait distribution

did not show dramatic changes in the variance or skewness of the distribu-

tion. However, the mean of SLA in the control plot did significantly

Trait value Trait value

Limit to the
range of  trait
values

A B

C D

F G

E

Trait value

Trait value Trait value

Trait value Trait value

Figure A1 Trait Driver Theory and examples of the first four central moments of trait
distributions: (A) mean (the first moment) and variance (the second moment). In this
example, we show two communities with the same mean trait value (dashed line)
but with different variances; (B) skew (a combination of the second and third moments).
Skewness in a trait distribution can be caused by (i) time lags in community response to
a new optimum trait value where a long tail of individuals expressing suboptimal trait
values is present in the community (e.g. see Fig. 2), (ii) lopsided trait immigration into
the community, or (iii) physical or physiological limits on trait expression (e.g. hydrolog-
ical constraints on plant height); and (iv) may reflect rare species advantage. As shown in
this example; and Kurtosis (a measure of the fourth moment relative to the second
moment). Competitive exclusion and/or strong stabilizing selection will give a highly
peaked (fourth moment kurtosis) distribution (C) while niche packing reflecting biotic
interactions could give a more uniform distribution (D). Note: a normal trait distribution
is defined by a skewness and kurtosis¼0. The more peaked the distribution, the more
positive the kurtosis value (including the logistic, hyperbolic secant, and Laplace distri-
butions). In contrast, processes that result in the ‘spreading out’ of traits will be charac-
terized by increasingly more negative kurtosis values. In the case of a uniform
distribution, kurtosis¼�1.2. An increasingly bimodal distribution (Bernoulli distribu-
tion) will have kurtosis values¼�2. (E) Bimodal distributions could arise where there
are multiple optimal (dashed lines) trait values (F), or where the community is
responding to a recent environmental change where the two peaks represent both
an increased representation of nearly optimal individuals (the high peak) and the con-
tinued presence of individuals with optimal trait values for the historic environment (the
low peak) (G). Dashed lines correspond to the optimal trait value(s).
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Figure A2 Examples of estimation of a community trait distribution from utilizing either
mean trait values and/or intraspecific variation. In this example,weuse abundance informa-
tion (A) for thepercent cover for16 species fromKonzaPrairie LTER, Kansas,USA.Next, a trait
measure, the leafphotosynthetic rate,wasmeasuredonaminimumof three leaveson three
separate plants. Species means and standard errors were then calculated for this trait for
each species. In (B) using the first method, the trait abundance distribution was calculated
usingonly themeantraitdata for the species in (A).Numbers in theparentheses indicate the
number of species in each trait bin, and thepeaks correspond to someof thedominant spe-
cies in plot (A) thatwere rank ordered by abundance andnot byphotosynthetic rate. Lastly,
using the secondmethod, the community trait distribution of all individuals can be further
approximated by integrating intraspecific subsampling. In (C), for each species, we incorpo-
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Figure A3 Change in the central moments of the community trait distribution for a key
trait—specific leaf area or SLA—in the 140-year long-term Park Grass experiment. Regres-
sion lines are indicated for significant relationships. Fertilization has caused a decrease in
the variance and an increase in the skewness. Fertilization increases themean assemblage
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dispersed’ uniform distribution, while plots with kurtosis values greater than 0 are more
clumped/peaked than expected from a normal or Gaussian distribution.
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decrease suggesting that natural and/or more gradual changes in the local

environment (possibly due to an increase in nitrogen limitation over time

and/or climate change) and/or recovery from past disturbance have

influenced the control community. The kurtosis of the trait distribution

in the control plot remained negative and close to �1.2 (a uniform distri-

bution) consistent with an increased role of divergent ecological forces

(niche packing and the role of biotic interactions). In contrast, in the fertil-

ized plot, the variance of the distribution has decreased and the kurtosis tends

to exhibit high positive values.

In the PGE, fertilization can be seen as a specific environmental driver,E.

Fertilization changes soil resource availability and, according to TDT, dif-

ferentially shifts the optimum growth rate. Indeed, in support we see a shift

in zopt (here being SLA) associated with fertilization. Analysis of the

moments of distributions for two other community traits, seed size and adult

reproductive height, shows that these trait means did not appreciably change

with fertilization (Figs. A4 and A5). Importantly, the community mean of

plant height did not change with fertilization supporting our assumption that

observed change in community NPP was primarily due to changes in SLA,

and also that the mean plant size or biomass, C, did not appreciably change.

The one change with fertilization that we do observe is that the community

variance of plant height increased. No other traits show any changes in the

fertilized plots. Future work elaborating TDT should include the role of

multiple trait drivers and their associated predictions.
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