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We present a theoretical framework to describe stochastic, size-
structured community assembly, and use this framework to make
community-level ecological predictions. Our model can be thought
of as adding biological realism to Neutral Biodiversity Theory by
incorporating size variation and growth dynamics, and allowing
demographic rates to depend on the sizes of individuals. We find
that the species abundance distribution (SAD) is insensitive to the
details of the size structure in our model, demonstrating that the
SAD is a poor indicator of size-dependent processes. We also derive
the species biomass distribution (SBD) and find that the form of the
SBD depends on the underlying size structure. This leads to a pre-
scription for testing multiple, intertwined ecological predictions of
the model, and provides evidence that alternatives to the tradi-
tional SAD are more closely tied to certain ecological processes.
Finally, we describe how our framework may be extended to make
predictions for more general types of community structure.
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T he introduction of Neutral Biodiversity Theory (1) (NBT)
ignited an ideological debate in community ecology, chal-

lenging the viewpoint that deterministic forces play the dominant
role in shaping patterns of biodiversity (2–9). NBT proposes that
community-level patterns are primarily determined by the effects
of demographic stochasticity, and that a detailed knowledge of
the traits of and interactions between individuals comprising the
community is irrelevant. It has been argued that the predictions
of NBT are uninformative of process (10–12), and it has been
demonstrated that the assumptions underpinning NBT are often
manifestly violated: in the tropical forests where the theory has
found striking success (1, 13, 14), there is a huge variation in
demographic rates of individuals (15, 16). Although there has been
much debate (6, 17, 18) about the importance of neutral, stochastic
processes, one common principle has emerged (17–20): the need
for a unified, theoretical framework both to quantify the effects of
demographic stochasticity relative to other forces, and to generate
a broader range of predictions more closely tied to process.

In this article, we integrate the effects of demographic stochas-
ticity with ontogenetic variation in the size of individuals (21), and
allow the demographic rates of individuals to explicitly depend
on their size. We assume that this variation in demographic rates
depends on size alone, and is not linked to species identity, an
approach that is closely related to the philosophy of allometric
scaling theory (8, 22–24): individuals of a given size play by the
same rules, regardless of species identity. Given the strong evi-
dence that demographic rates in nature are correlated with size
(8, 16), this synthesis of size variation with demographic stochas-
ticity may be thought of as adding a crucial extra layer of biological
realism to NBT.

From these ingredients we derive a functional differential equa-
tion to describe ecological communities, and use its analytical
solution to answer three key questions. First, are our predictions
consistent with deterministic, size-structured models? It is often
assumed that demographic stochasticity will have little impact

on deterministic results (25), and our model allows us to quan-
tify its effects analytically. Second, are our predictions consistent
with NBT? To answer this question we compare the species abun-
dance distributon (SAD) of our size-structured, stochastic model
with the SAD predicted by NBT. Finally, can we make macro-
ecological predictions by using our framework? To address this
we derive the first theoretical prediction for the species biomass
distribution (SBD), a characterization of community structure
where abundance is measured in a currency other than number of
individuals (26).

Background: Size Structure and Stochasticity
Our model of size-structured, stochastic community assembly may
be regarded as a synthesis of two earlier theories, which we review
in this section. The first is the Von Foerster equation, a continuity
equation that predicts the size spectrum of a population, based
on the scaling of individual growth and mortality rates with size.
It was introduced in an epidemiological context by McKendrick
(27), and later developed by Von Foerster (28) to describe the dis-
tribution of ages in cell populations. More recently, equilibrium
solutions of the Von Foerster equation have found applications
in community ecology, where they have been used to characterize
the abundance of trees in tropical forests as a function of their
basal diameter (29).

The second ingredient is Hubbell’s Neutral Biodiversity The-
ory (1), which makes general predictions for the distribution of
species abundances in a community, based on the effects of demo-
graphic stochasticity. At the metacommunity level, NBT describes
a community of individuals undergoing stochastic birth, death, and
speciation processes, and individuals of all species are taken to
have the same demographic rates. Birth rate is taken to be less than
mortality rate, so that every extant species is taking a random but
inexorable walk toward extinction. We note that this approach of
fitness equalization contrasts with many niche-based approaches
to species coexistence and community assembly, which emphasize
the importance of stabilizing mechanisms (7, 30).

Size Structure and the Von Foerster Equation. The Von Foerster
equation predicts the abundance of individuals per unit size,
n(m, t), as a function of size, m, and time, t. The equilibrium distri-
bution, n(m), is known in ecology as an individual size distribution
or a size spectrum (31), and is a time-independent solution of the
following differential equation:

∂n(m, t)
∂t

= −∂
(
g(m)n(m, t)

)
∂m

− d(m)n(m, t). [1]
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The inputs for this equation are the scaling of ontogenetic growth
of individuals, g(m) and mortality rate, d(m) with body size, and
the boundary condition at the smallest size, m0, is determined by
a balance between birth, growth, and immigration.

The intuitive meaning of the Von Foerster equation is simply
that growth into a given body-size class is balanced by growth out,
and mortality. However, the form of the resulting size spectrum
depends on the precise scaling of growth and mortality as a func-
tion of size. These scalings may either be thought of as theoretical
predictions, for example, from the metabolic theory of ecology
(8, 24), or as empirical inputs.

Stochasticity and Neutral Biodiversity Theory. We use the formu-
lation of Volkov et al. (13), which is essentially equivalent to
Hubbell’s original zero-sum model (1, 32). The dynamics of the
species abundance distribution, P(N , t), are described by a mas-
ter equation (1, 13, 33, 34). Births and deaths are modeled as
density-independent processes, so that births of individuals occur
at a constant per capita rate, b, and deaths at a rate, d, such that
b < d. Speciation is modeled as an immigration process at rate ν
from the pool of all possible species:

dP(N , t)
dt

= b(N − 1)P(N − 1, t) + d(N + 1)P(N + 1, t)

− (b + d)NP(N , t) + νP(N − 1, t) − νP(N , t). [2]

In the limit of small speciation rate, ν, relative to birth rate, b,
the NBT prediction for the equilibrium SAD is the following
time-independent solution of Eq. 2:

P(N) = ν

bN

(
b
d

)N

= ν

bN

( 〈N〉
〈N〉 + ν

b

)N

, [3]

where the second equation uses the mean abundance per species,
〈N〉. Hence, NBT predicts the familiar log series species abun-
dance distribution. This distribution was first introduced in an
ecological context by Fisher, who took the precisely same limit
to obtain the log series as a limit of the negative binomial
distribution (35).

Combining Stochasticity with Size-Structure
Our model describes a community of individuals structured by
their size, m, and may be thought of as a synthesis of the Von Foer-
ster equation with NBT. We interpret size flexibly, so that m may,
for example, represent length, diameter, volume, or mass. Each
individual undergoes a continuous, deterministic growth process
with size-dependent growth rate, g(m), while birth, death, and
speciation processes are stochastic. Individuals die with a size-
dependent per capita rate, d(m), and individuals give birth with a
size-independent per capita rate, b, to new individuals who enter
the lowest size class, m0. (The case of fixed birth rate, b, is more
tractable than the general case of a size-dependent birth rate,
which we address in Discussion.) Finally, there is speciation at
a rate ν, modeled as an immigration from the pool of all species
into the lowest size class. The conceptual distinction between our
model and NBT is illustrated in Fig. 1.

Master Equation and Partition Function. We now derive the central
equation of our model step-by-step, beginning with an approxi-
mation based on discrete size classes (33, 36–38). As in NBT, the
dynamics of this discrete community are described by a master
equation, but in this case the description of a population is given
by a set of abundances in discrete size classes, {ni}, where each
ni is the abundance in size class i. The probability of finding the
population in a given state at time t is P(n0, n1, . . . , t), which we
take to satisfy the following discrete master equation:

Fig. 1. We illustrate the conceptual differences between NBT and our model
by using a single tree species in a forest. (A and B) Shown is the time evolu-
tion of a neutral community through one time step, undergoing stochastic
birth and death processes. (C and D) Shown is the time evolution of a sto-
chastic, size-structured community. Demographic processes are still random,
but demographic rates and ontogenetic growth rates depend on size.

∂P(n0, . . . , t)
∂t

=
∑
i=0

di(ni + 1)P(n0, . . . , ni + 1, . . . , t)

−
∑
i=0

diniP(n0, . . . , ni, . . . , t)

+
∑
i=0

b(ni − δi0)P(n0 − 1, . . . , ni, . . . , t)

−
∑
i=0

bniP(n0, . . . , ni, . . . , t)

+ νP(n0 − 1, n1, . . . , t) − νP(n0, n1, . . . , t)

+
∑
i=0

gi(ni + 1)P(n0, . . . , ni + 1, ni+1 − 1, . . . , t)

−
∑
i=0

giniP(n0, . . . , ni, . . . , t) [4]

The mortality terms are precisely analogous to the familiar case
of NBT, but instead of a single pair of mortality terms there is now
a pair of terms for each size class, labeled by i. The birth terms
also take a familiar form, but with the nuance that all individuals
are born into the lowest size class, labeled by 0. The third set of
demographic terms represent a stochastic speciation/immigration
process, with probability ν per unit time of a speciation event
occurring, where an individual from a new species is born into
the lowest size class. Finally, gi represents the probability per unit
time that an individual in size class i grows into size class i + 1, a
process with no analogue in NBT.

Our aim is to take the biologically relevant limit of Eq. 4 in which
discrete size classes become continuous. Taking this limit becomes
considerably easier when Eq. 4 is cast in terms of the multivariate
generating function, which is defined as:

Z(h0, h1, . . . , t) =
∑
{ni}

P(n0, n1, . . . , t)e
∑

hini . [5]

The sum is taken over all possible combinations of abundances,
{ni}, and the definition of the generating function means that
derivatives of log Z, taken at hi = 0, are equal to the moments
of the distribution, P. With knowledge of all the moments, one
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can exactly reconstruct the distribution P, and hence, in principle,
address any relevant biological question. Although the use of a
generating function may be unfamiliar in this context, we note that
one could also describe NBT by using a generating function, z(h),
with a single parameter h. Derivatives with respect to h generate
the moments of the SAD in the NBT case.

To express the master equation (Eq. 4) in terms of Z, we multiply
each term in Eq. 4 by e

∑
hini and then sum over all combinations of

abundances, {ni}. This leads to the following transformed master
equation:

∂Z
∂t

=
∑
i=0

di
∂Z
∂hi

(e−hi − 1) +
∑
i=0

gi
∂Z
∂hi

(ehi+1−hi − 1)

+
[
νZ +

∑
i=0

b
∂Z
∂hi

]
(eh0 − 1). [6]

Having made this transformation, it is now possible to take the
limit of continuous size, as the separation between size classes,
�m → 0. We use dimensional analysis to assign the following
scalings with �m:

gi = g(mi)
�m

di = d(mi)
hi = H(mi).

In the limit of �m going to zero, the function Z(h0, h1, . . . )
becomes a functional, Z[H], which depends on a continuous func-
tion H(m) instead of the discrete set of variables, {hi}. Z[H] is
known as a partition function in statistical physics and quantum
field theory (39), and we use this terminology for the remainder
of the article.

In the continuum limit, sums over partial derivatives in Eq. 6
become integrals over functional derivatives (which are defined in
supporting information (SI) Appendix) and the partition function
Z[H] satisfies the following functional master equation:

∂Z
∂t

=
∫ ∞

m0

dm d(m)
δZ

δH(m)
(e−H(m) − 1)

+
∫ ∞

m0

dm g(m)
δZ

δH(m)
dH
dm

+
[

b
∫ ∞

m0

dm
δZ

δH(m)
+ νZ

]
(eH(m0) − 1). [7]

The inputs for Eq. 7 are the size-dependent growth and mor-
tality rates of individuals, g(m) and d(m), respectively, the size-
independent birth rate, b, and the rate of speciation, ν. The first
term on the RHS may be thought of as a size-structured general-
ization of the mortality terms in the NBT master equation (Eq. 2).
The last term generalizes the birth and speciation terms, while
the middle term of Eq. 7 has no analogue in NBT, because it rep-
resents the effect of ontogenetic growth on community structure.
Our master equation may be thought of as a unification of the Von
Foerster equation, Eq. 1, and the master equation of NBT, Eq. 2,
and solving this equation for the partition function is the central
question in our theoretical framework.

Characterizing Community Properties
In this section we present a time-independent solution of our
key equation, Eq. 7, and explore the implications of this solution
for the properties of size-structured ecological communities. The
solution is as follows:

log Z = −ν

b
log

[
1 − b

ν

∫ ∞

m0

dm f (m)(eH(m) − 1)

]
. [8]

The input parameters and functions are encoded in the function
f (m), which must satisfy the following differential equation and
boundary condition:

d
dm

(
g(m) f (m)

) + d(m) f (m) = 0 [9]

f (m0) g(m0) = ν + b
∫ ∞

m0

dm f (m). [10]

The manipulations necessary to show that Eq. 8 solves Eq. 7 are
demonstrated explicitly in SI Appendix.

In the remainder of this section, we examine in detail the prop-
erties and ecological consequences of this equilibrium solution in
three steps. First, we derive the expectation value of the equilib-
rium size spectrum. This is given by 〈n(m)〉, the average number of
individuals per unit size, per species. We also characterize the fluc-
tuations around this solution and correlations between different
sizes, which are analogous to correlation functions in spatial ecol-
ogy (40, 41). Second, we derive the equilibrium species abundance
distribution, integrated across all sizes. Finally, we reinterpret m
as individual mass, and derive the corresponding species biomass
distribution.

Size Spectrum and Fluctuations. Our partition function is formally
defined as the expectation value,

Z[H] =
〈
e
∫ ∞
m0

dm H(m)n(m)
〉

, [11]

which is the continuum limit of Eq. 5. This means that we can
obtain the expectation value of abundance, 〈n(m)〉, by taking a
single functional derivative of our solution with respect to H(m),
and then setting H = 0. Taking a single functional derivative of
Eq. 8 we find:

〈n(m)〉 = f (m).

This means that the mean abundance per unit size is just equal
to f (m), which we know must satisfy Eq. 9. Comparing Eq. 9 with
Eq. 1, the meaning of this solution and the significance of the
function f (m) become quite clear: the expectation value 〈n(m)〉
is a time-independent solution of the deterministic Von Foerster
equation. This means that the effects of demographic stochasticity
completely average out, and we have the same result for the mean
size spectrum as we would have had without any stochasticity at all.

The Von Foerster equation does not allow for any characteriza-
tion of fluctuations around the mean size spectrum, because it is
an entirely deterministic model. In contrast, our framework char-
acterizes the size and nature of the fluctuations around this mean
spectrum, either through the variance of fluctuations within a size
class, or more generally the correlation of fluctuations between
two different size classes. The two-point correlation in fluctuations
between size classes m1 and m2 is given by the second functional
derivative of Eq. 8 with respect to H , which we find is:

〈n(m1)〉δ(m1 − m2) + b
ν
〈n(m1)〉〈n(m2)〉. [12]

If we had found only the first term, the Dirac delta function
tells us that this would correspond to a random, Poisson process
acting independently in each size class. But the second term of
Eq. 12 means that the birth process introduces positive, nonzero
correlations in the fluctuations across different size classes.

Much like the mean size spectrum, this positive correlation of
fluctuations across different sizes also has an intuitive meaning.
Suppose at some point in time that a fluctuation leads to a larger
than average abundance of trees in a given diameter class. These
trees will then give birth to a higher than expected number of
new seedlings in the next generation, which sets up a correlation
between the fluctuations in these two size classes. Because this cor-
relation arises from the birth process, the second term in Eq. 12 is
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naturally proportional to the birth rate, b. Both fluctuations tend to
persist as individuals from each of the size classes continue to grow,
and so we end up with positive correlations between fluctuations
in all size classes.

Species Abundance Distribution. Our next main conclusion is that
the species abundance distribution is completely insensitive to size
structure, which we now demonstrate. First, we note that we may
obtain biologically relevant distributions from the formal defini-
tion of the partition function, Eq. 11, by choosing a specific form
for H(m). For example, choosing H(m) to be a constant, h, Eq. 11
reduces to the following function:

zsad(h) = 〈
eh

∫ ∞
m0

dm n(m)〉
= 〈ehN 〉. [13]

where N is now the total abundance, integrated across all sizes.
This is precisely the definition of the generating function of the
SAD.

Setting H(m) = h in our actual solution, Eq. 8, the result is
that for a size-structured community the moments of the SAD are
generated by the following function:

log zsad(h) = −ν

b
log

[
1 − b

ν
〈N〉(eh − 1)

]

where 〈N〉 is the expectation value of total abundance per species,
integrated over all size classes. The significance of this result
is much more obvious when we consider the SAD itself, rather
than its generating function (42). In the limit of small ν

b , which is
appropriate for comparison with NBT, the SAD is

P(N) = ν

bN

( 〈N〉
〈N〉 + ν

b

)N

. [14]

This distribution is identical to the Neutral Theory SAD, Eq. 3, and
so whatever the structure of the size variation in our community,
we find the same, log series SAD.

Species Biomass Distribution. We have phrased our model in terms
of individual size, but we may equally well interpret m as the mass
of an individual. Using this interpretation we can derive an expres-
sion for the species biomass distribution, P(M), the probability
that a species has a total biomass, M , and we find that this distrib-
ution is much more closely tied to the size structure of a community
than the SAD.

To derive the SBD, we use a method similar to the SAD case.
Setting H(m) equal to hm, for constant h, Eq. 11 reduces to the
following function:

zsbd(h) = 〈
eh

∫ ∞
m0

dm m n(m)〉
= 〈ehM 〉. [15]

where M is the total biomass, integrated over all individual masses,
rather than total abundance. The SBD corresponding to our
solution is generated by:

log zsbd(h) = −ν

b
log

[
1 − b

ν

∫ ∞

m0

dm f (m)(ehm − 1)

]
. [16]

The form of Eq. 16 means that this model makes no universal pre-
diction for the species biomass distribution. In contrast to the log
series result for the SAD, the form of P(M) depends crucially on
the details of g(m), d(m), b, and ν.

A Concrete Example
The results of the preceding section are very general, but their
implications are not necessarily intuitive. For example, although
the generating function given by Eq. 16 determines the moments
of the SBD for a community with any given size structure, it is
also illuminating to consider a specific case in more detail. In this
section we compute and compare the SAD and the SBD for a
specific mass-structured community that we term “completely”
neutral. This is a very simple case, for which growth and mortality
rates are independent of an individual’s mass:

g(m) = g
d(m) = d.

We also take for simplicity that individuals are born at a very small
size, so that m0 ≈ 0. We call this community completely neu-
tral because all individuals really are the same, both in terms of
their birth and death dynamics, and in terms of their ontogenetic
growth. Of course, we may consider more general and more bio-
logically realistic cases by using our framework, but this simple case
provides an important insight into the more general differences
between the SAD and the SBD.

Completely Neutral Size Spectrum. The size spectrum is given by the
solution to Eq. 9 (a time-independent version of the Von Foerster
equation, Eq. 1), with boundary condition (Eq. 10):

g
df (m)

dm
+ d × f (m) = 0

gf (m0) = ν + b
∫ ∞

m0

dm f (m),

which has solution

〈n(m)〉 = f (m) = ν

g
(
1 − b

d

) e− d
g m. [17]

This means that the mean size spectrum, averaged across all
species, drops off exponentially with increasing individual size:
there are fewer larger individuals simply because more of their
cohort are already deceased.

Completely Neutral SAD. We have already concluded that the SAD
is always a log series, given by Eq. 14. To make the comparison with
NBT even clearer, this SAD may be further rewritten in terms of
the familiar NBT diversity parameter, θ , and the total number of
individuals in the metacommunity, J , and for small ν

b :

θ = Sν

b
J = S〈N〉 [18]

where S is the number of extant species in the metacommunity,
and our conventions follow ref. 13. Reexpressing Eq. 14 in terms of
θ and J , the absolute species abundance distribution for N > 0 is

S(N) = SP(N) = θ

N

(
J

J + θ

)N

. [19]

Completely Neutral SBD. We can compute P(M) for this neutral
community by taking the inverse Laplace transform of Eq. 16,
with the details presented in SI Appendix. The result is:

P(M) = ν

bM

(
e−

(
d−b

g

)
M − e− d

g M
)

. [20]

This is a unique analytical prediction of the neutral species biomass
distribution, and we note that although it bears some similarity
to the species abundance distribution, there are some significant
differences. To see the impact of these differences most clearly,
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Fig. 2. The species biomass distribution is sensitive both to species richness and to community size-structure. For the completely neutral community defined
in the text, A, B, and C show the respective variations of the size spectrum, the SAD, and the SBD with varying species richness. Richness is parametrized by θ ,
which is the NBT biodiversity parameter (1, 13). We find that the shape of the size spectrum is insensitive to overall species richness, while both the SAD and
SBD show increasing numbers of rare or low-biomass species with increasing θ . In constrast, D, E, and F show the variation of these three distributions with
varying size structure, parametrized by the ratio of growth rate to mortality rate, g

d . With increasing g
d , the size spectrum shows increasing numbers of large

individuals relative to small individuals, reflecting that more individuals have the chance to grow large before they die. The SBD shows decreasing numbers of
low-biomass species relative to abundant species with increasing g

d , but the SAD is entirely insensitive to changes in size structure.

we again rewrite this distribution in terms of the NBT diversity
parameter and total metacommunity abundance, so that:

S(M) = θ

M

(
e−

(
θ

θ+J
d
g

)
M − e− d

g M
)

. [21]

Like the SAD, the biomass distribution depends on the species
richness, through θ , but it also depends on the underlying struc-
ture of this community, through the mass-scale g

d . We illustrate
this central message of our concrete example in Fig. 2: the SBD is
sensitive to the size or mass structure of our community, whereas
the SAD is not.

Discussion
We have presented an integrated mathematical framework to
describe communities structured by size, and subject to demo-
graphic stochasticity. This framework provides a language with
which we can quantify both the impact of demographic stochas-
ticity and the impact of individual variation on community struc-
ture, and by focusing on the importance of size variation (8), we
address the call by Hubbell (1) to add biological realism to Neutral
Biodiversity Theory (NBT).

Key Results. Using our framework, we have derived a number
of predictions for stochastic, size-structured communities. We
predict the mean size spectrum, which we find must satisfy the
Von Foerster equation, and we make predictions for the size and
correlation of fluctuations around this mean spectrum.

We find that the species abundance distribution (SAD) takes
the form of a log series, and is completely independent of the
underlying variation in individual sizes and demographic rates.
The irrelevance of size structure in determining the metacommu-
nity SAD provides a theoretical underpinning for the success of

NBT in predicting dispersal-limited, local SADs in tropical forests,
where variation in demographic rates is strongly correlated with
body size (16).

While the robustness of the neutral SAD provides some expla-
nation for the validity of NBT predictions, this result also under-
lines the inadequacy of the SAD to distinguish between different
underlying processes. Our species biomass distribution (SBD) is a
unique kind of prediction, and in contrast to the SAD we find that
it depends crucially on the details of the variation in individual
sizes. For given scalings of demographic rates, we derive Eq. 16,
the generating function of the SBD, and demonstrate that the SBD
itself may be computed via inverse Laplace transform. This deriva-
tion provides evidence that characterizing biodiversity in terms of
appropriate alternative currencies will allow ecologists to probe
community structure more deeply than with the SAD (26).

Applications. Any empirical evaluation of our model based on the
SAD will produce the same results, negative or positive, as a test
of neutral theory. However, with the addition of size structure, we
may generate a much broader suite of predictions, as advocated
by recent work on “alternative currency” distributions (26). We
have explored what we regard as the three most important and
accessible of those predicted distributions: the size spectrum, the
SAD, and the SBD.

One prescription for testing the model would be to measure the
size spectrum empirically, and use this to compute the SBD by tak-
ing the inverse Laplace transform of Eq. 16. This should then be
compared with the empirical SBD, which in practice must be com-
puted by binning individuals into discrete size classes. Whether
our framework can reproduce multiple, interrelated distributions
in this way constitutes a far more stringent empirical evaluation
than simply testing the SAD.
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Generalizations. There are three important generalizations of
our specific model. First, whereas we have allowed for size-
dependent growth and mortality rates, we solved for the case of
a size-independent birth rate, b. This approximation is not nec-
essarily realistic, and so an important generalization of Eq. 7 is
size-dependent fecundity, b(m):

∂Z
∂t

=
∫ ∞

m0

d(m)
δZ

δH(m)
(e−H(m) − 1)

+
∫ ∞

m0

g(m)
δZ

δH(m)
dH
dm

+
[∫ ∞

m0

b(m)
δZ

δH(m)
+ νZ

]
(eH(m0) − 1). [22]

Although it is straightforward to generalize the equation itself,
finding the equilibrium solution of Z[H] in this case represents
important future research. It remains to be seen how sensitive the
SAD and SBD are to variation in fecundity.

A second generalization is the introduction of explicit interspe-
cific variation, either through variation in birth size, m0, or through
interspecific variation in the scaling of demographic rates with size
(43). This will allow us to make a closer connection with comple-
mentary work integrating neutral processes with interspecific size
variation (44–46), and to quantify the expected departures from
the predictions of the current model. All species in our model
share the same underlying dependencies of demographic rates on
the size or mass of individuals, and the robustness of the log series
SAD may rest precisely on this residual symmetry. The relative
size of inter- vs. intraspecific variation seems likely to be a crucial
determinant of the validity of our predictions.

Finally, our model may be adapted to integrate variation in her-
itable traits with demographic stochasticity. The basic framework
would follow Eq. 22, but with variation in trait values from gen-
eration to generation alongside ontogenetic variation in size. In
all three of these generalizations, the central mathematical tool
is the partition function, and to tackle any one of them we must
be prepared to cross disciplines, and borrow relevant tools from
evolutionary biology or statistical physics (39).

Conclusions. Our model has allowed us to quantify the combined
effects of size structure and demographic stochasticity, showing
that the SAD is insensitive to size structure, and that the SBD is a
more informative characterization of community properties. The
model also constitutes progress toward a very general framework
for community assembly. Including the variation of heritable traits,
in addition to ontogenetic growth, and interspecific variation, in
addition to intraspecific variation, will provide us with a powerful
framework to unify stochastic and trait-based approaches to com-
munity assembly, with the promise of a broad range of stringent
empirical tests.
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Stochastic, Size-Structured Community
Assembly: Supporting Information

1 Full Derivation of the Equilibrium Partition Function

In the main body of the text, we provided an equilibrium solution of our functional
Master Equation. First, we set ∂Z

∂t = 0, so that we are looking for an equilibrium
solution. Then, rewriting the Eq.[7] in terms of log Z, rather than Z, we need to solve

0 =
∫ ∞

m0

dm d(m)
δ log Z

δH(m)

(
e−H(m) − 1

)

+
∫ ∞

m0

dm g(m)
δ log Z

δH(m)
dH

dm

+
[
b

∫ ∞

m0

dm
δ log Z

δH(m)
+ ν

](
eH(m0) − 1

)
. (1)

In the main text, we stated that this equilibrium solution took the form:

log Z = −ν

b
log

[
1− b

ν

∫ ∞

m0

dmf(m)
(
eH(m) − 1

)]
. (2)

We may now confirm that (2) solves (1) by direct substitution. To do this, we must
make use of the following simple rule for taking functional derivatives:

δH(m′)
δH(m)

= δ(m′ −m), (3)

where δ(m′ −m) is the Dirac delta function. (Informally-speaking, the delta function
represents an infinitely sharp peak at m = m′, bounding unit area, so that the functional
derivative vanishes unless m′ is equal to m.)

Applying this rule in conjunction with the chain rule, we may compute the functional
derivative of Eq.(2) to obtain

δ log Z

δH(m)
=

ν
b

b
ν

∫∞
m0

dm̃f(m̃) δH(m̃)
δH(m)e

H(m̃)

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

)

=
f(m)eH(m)

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

) . (4)

1



We may now check that Eq.(2) solves Eq.(1) by plugging this result into Eq.(1), and
checking that we have a time-independent solution, as claimed. To see this, we show
that the right-hand-side of Eq.(1) sums to zero:
∫ ∞

m0

dm

[
d(m)

δ log Z

δH(m)

(
e−H(m) − 1

)
+ g(m)

δ log Z

δH(m)
dH

dm

]
+

[
ν + b

∫ ∞

m0

dm
δ log Z

δH(m)

](
eH(m0) − 1

)

=
1

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

)
∫ ∞

m0

[
−d(m)f(m)

(
eH(m) − 1

)
+ g(m)f(m)

d

dm

(
eH(m) − 1

)]

+

[
ν +

b

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

)
∫ ∞

m0

dmf(m)eH(m)

](
eH(m0) − 1

)

=
eH(m0) − 1

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

)
[
−g(m0)f(m0) + ν − ν

b

ν

∫ ∞

m0

dm̃f(m̃)
(
eH(m̃) − 1

)

+b

∫ ∞

m0

dmf(m)eH(m)

]

=
eH(m0) − 1

1− b
ν

∫∞
m0

dm̃f(m̃)
(
eH(m̃) − 1

)
[
−b

∫ ∞

m0

dm̃f(m̃)eH(m̃) + b

∫ ∞

m0

dmf(m)eH(m)

]

= 0, (5)

as required. We used the boundary condition for f(m),

f(m0)g(m0) = ν + b

∫ ∞

m0

dm f(m), (6)

to obtain the third equality.

The central message of this derivation is that Eq.(2) does indeed solve Eq.(1), our
master equation for the partition function Z[H].

2 Obtaining Explicit Expressions for the Species Biomass
Distribution

In the main body of the text we derived the following expression for the generating
function for the species biomass distribution, P (M):

log zsbd(h) = −ν

b
log

[
1− b

ν

∫ ∞

m0

dmf(m)
(
ehm − 1

)]
. (7)

The distribution P (M) is defined via the following transform:

zsbd(h) =
∫

dM P (M)ehM , (8)

2



so that moments of P (M) are equal to appropriate derivatives of zsbd(h) with respect
to h, as required. Given this definition, we may compute P (M) explicitly by taking the
inverse Laplace transform of zsbd(−h):

P (M) =
1

2πi

∫ γ+i∞

γ−i∞
dh zsbd(−h)ehM . (9)

The contour is defined so that the real number γ is greater than than the real part of
all singularities of zsbd(−h). I.e. the contour is a vertical line in the complex plane, to
the right of those singularities.

2.1 The Totally Neutral Community

We gave the example in the main text of a totally neutral community, that is where all
individuals have the same birth, death and growth rates, irrespective of species identity
or size:

g(m) = g

d(m) = d.

For this choice of size-structure, we have that

f(m) =
ν

g
(
1− b

d

)e
− d

g
m (10)

and the problem of finding P (M) reduces to the following contour integral,

I =
∫

C
dh

[
1− b

g
(
1− b

d

) 1
h + d

g

+
b

d− b

]− ν
b

ehM

=
(

1 +
b

d− b

)− ν
b
∫

C
dh

(
h + d

g

) ν
b

(
h + d−b

g

) ν
b

ehM , (11)

where the contour C is defined as above. Changing variables to

ω =
gh

b
+

d

b
, (12)

we have

I =
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b
∫

C
dh

(
bω
g

) ν
b

(
bω
g − b

g

) ν
b

e
bωM

g

=
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b
∫

C
dh

(ω)
ν
b

(ω − 1)
ν
b

e
bωM

g . (13)
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The function to be integrated has a branch cut between ω = 0 and ω = 1, and so we
must take the contour C to be such that γ > 1.

This contour may be closed with a large semicircle to the left of C in the complex
plane, and for M > 0 this semicircle gives a vanishing contribution. From Cauchy’s
integral theorem, this integral may be shrunk to an integral anticlockwise around the
branch cut. This contour can be shrunk to be infinitessimally thin, so that all is left is
an integral along the top of the branch cut from right to left, ω = 1 to 0, and an integral
along the bottom of the branch cut from left to right, ω = 0 to 1. These two integrals
are:

Itop =
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b
∫ 0

1
dω

(ω)
ν
b

(1− ω)
ν
b

e
bωM

g e−
iπν

b (14)

and

Ibottom =
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b
∫ 1

0
dω

(ω)
ν
b

(1− ω)
ν
b

e
bωM

g e
iπν

b . (15)

Adding both together we obtain

I = Itop + Ibottom =
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b

2i sin (πν/b)
∫ 1

0
dω

(ω)
ν
b

(1− ω)
ν
b

e
bωM

g (16)

and so for M > 0 the distribution is

P (M) =
b

g
e
− dM

g

(
1 +

b

d− b

)− ν
b sin (πν/b)

π

∫ 1

0
dω

(ω)
ν
b

(1− ω)
ν
b

e
bωM

g . (17)

Taking the limit of small ν/b we obtain the result relevant for neutral theory:

P (M) =
b

g
e
− dM

g
ν

b

∫ 1

0
dω e

bωM
g + O

(ν

b

)2

=
ν

bM

(
e
− d−b

g
M − e

− d
g
M

)
(18)
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